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Model selection in a stochastic setting.

T. Prvan∗ M. R. Osborne†

(Received 8 August 2003; revised 24 February 2004)

Abstract

The given data is a set of observations on functionals of a trajectory
of a system of differential equations. The a priori information is that
the system is a member of a parametric family of systems of increasing
complexity. The problem is to use the data to identify the particular
member of this family which generated the observed data. The method
associates each candidate model with the analogue of a generalised
smoothing spline fitted to the given data. The resulting values of the
smoothing parameter as well as graphical inspection of fit provide a
basis for model selection.
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1 Introduction

The observed data is assumed to be of the form

yi = hT x(ti) + εi . (1)

where h defines the “observation functional” and the observational error is
denoted εi. The observational errors εi are assumed to be independently and
identically distributed according to a Normal distribution with zero mean
and common variance σ2 (denoted εi ∼ N(0, σ2)). The system of differential
equations that x(t) satisfies will be assumed to be linear:

dx

dt
= M(t,β)x . (2)

The vector β, depending on the problem being considered, may contain un-
known parameters that need to be estimated from the data or known pa-
rameters. If the parameters are assumed to be known or fixed β will be
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suppressed. If there is no time component t this will also be suppressed.
The problem has a well defined solution and h must have the property to
capture it. The vector h must satisfy the condition that the solution of the
differential equation is identifiable.

Generalised smoothing splines will be used to obtain the model that best
fits the data. A stochastic formulation of the generalised smoothing spline
will be used which permits the use of the Kalman filter, followed by the Fixed-
interval, Discrete-time smoother (rts smoother) and then an application of
the Interpolation smoother to obtain E{x(t) | y1, . . . , yn} and hence the point
estimate at time t.

Section 2 outlines the stochastic formulation of smoothing splines and
then introduces generalized smoothing splines. Section 3 gives computa-
tional details and Section 4 provides smoothness properties of the generalised
smoothing spline. Some model selection examples will be given in Section 5.

2 Stochastic formulation of smoothing spline

extended to generalised smoothing spline

We first introduce the smoothing spline and the stochastic differential equa-
tion that a smoothing spline solves.

Suppose that the data (t1, y1), . . . , (tn, yn) are observed and it is assumed
that the data can be decomposed as the signal plus noise model

yi = f(ti) + εi , εi ∼ N(0, σ2) , i = 1, . . . , n . (3)

The signal f(t) is unknown and we wish to approximate it. One way to do
this is by fitting a smoothing spline to the data. A smoothing spline f is the
minimizer of

n∑
i=1

(yi − f(ti))
2 + µ

∫ tn

t1

(
f (m)(t)

)2
dt . (4)
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The resultant curve is a piecewise polynomial of degree 2m− 1 with 2m− 2
continuous derivatives.

Wecker and Ansley [5] presented a stochastic formulation of the smooth-
ing spline utilising a result by Wahba [4]. She showed that a polynomial
smoothing spline is the solution to the stochastic differential equation

dmx

dtm
= σ

√
λ

dω

dt
. (5)

where ω(t) is a Wiener process (see for example Billingsley [1]) with unit
dispersion parameter, λ = 1/µ and x(t1) = [x(t1), . . . , x

(m−1)(t1)]
T has a

diffuse prior (that is, x(t1) ∼ N(0, γ2Im) and γ2 →∞). The solution is

f(t) = lim
γ2→∞

x(t | n) ,

where x(t | n) is the expected value of x(t) conditioned on the data y1, . . . , yn ;
that is, E{x(t) | y1, y2, . . . , yn} . The stochastic differential equation (5) can
be written in the matrix companion form

dx

dt
=

(
0m−1 Im−1

0 0T
m−1

)
x + σ

√
λem

dω

dt
, (6)

and the notation ej is used to denote an m-vector having all zeros except
for a 1 in the jth position. Corresponding to assumption (3) we write the
observation equation as

yi = eT
1 x(ti) + εi .

To seek generalised smoothing splines, as defined in Osborne and Prvan [2],
we generalise the stochastic differential equation associated with smoothing
spline to

dx

dt
= M(t,β)x + σ

√
λb

dω

dt
, (7)

where M(t,β) : Rm → Rm and ω is a Wiener process with unit disper-
sion parameter. The initial conditions are the same as for the polynomial
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smoothing spline and the point estimates are E{hT x(t) | y1, . . . , yn} . The
corresponding observation equation is

yi = hT x(ti) + εi . (8)

We now obtain the state space formulation of the generalised smoothing
spline. Let X(t, t1) be the fundamental matrix solution of the associated
homogeneous differential equation, that is,

dX

dt
= M(t,β)X , X(t1, t1) = Im .

The solution to the stochastic differential equation (7) satisfying initial con-
dition x(t1) = x1 is

x(t) = X(t, t1)x1 + σ
√

λ

∫ t

t1

X(t, s)b
dω

ds
ds .

This solution can be written in the form of a recursion as

xi = Xixi−1 + σ
√

λui , (9)

with xi = x(ti) , Xi = X(ti, ti−1) and ui = u(ti, ti−1) where

ui =

∫ ti

ti−1

X(ti, s)b
dω

ds
ds ,

ui ∼ N(0, R(ti, ti−1)) ,

R(ti, ti−1) =

∫ ti

ti−1

X(ti, s)bbT X(ti, s)
T ds .

For given λ a forward pass of the Kalman filter, backward pass of the rts
Smoother and interpolation smoother are implemented on the state space
formulation (8) and (9) to obtain x(t | n) and hence the generalised smooth-
ing spline and its first m − 1 derivatives evaluated at t. The smoothing
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parameter λ is usually chosen by generalised cross validation or maximum
likelihood, for more details refer to Osborne and Prvan [2, 3] and references
contained therein. In Osborne and Prvan [2] it was shown that the effect
of γ becomes asymptotically negligible by the mth step of the Kalman Filter
when γ is large.

The diffuse prior can be dealt with explicitly by setting γ sufficiently
large. For details on how to deal implicitly with the diffuse prior refer to
Wecker and Ansley [5].

By varying h and b we come up with classes of generalised smoothing
splines having different smoothness properties. The smoothness result in Os-
borne and Prvan [2] will still hold since it was developed for general M(t,β).
The form of the vector h depends on the observed data. The smoothness
properties depend on the interaction properties between h and b. As h is
fixed by the form of the data designer questions come down to making an
appropriate choice of b.

3 Computation

We initialise the Kalman Filter with x1|0 = 0 and S1|0 = γ2Im where γ is
chosen to be large. The effects of γ are asymptotically negligible by step m
of the Kalman filter. The Kalman filter recursions are, for i = 2, . . . , n :

xi|i−1 = X(ti, ti−1)xi−1|i−1 ,

Si|i−1 = X(ti, ti−1)Si−1|i−1X(ti, ti−1)
T + λσ2R(ti, ti−1) ,

di = hT Si|i−1h + σ2 ,

ςi = yi − hT xi|i−1 ,

xi|i = xi|i−1 + Si|i−1hςi ,

Si|i = Si|i−1 − Si|i−1hd−1
i hT Si|i−1 .
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The quantities xn|n and Sn|n obtained from the forward pass of the
Kalman filter initialise the rts Smoother, for j = n, . . . , 1 :

Aj = Sj|jX(tj+1, tj)
T S−1

j+1|j ,

xj|n = xj|j + Aj(xj+1|n − xj+1|j) ,

Sj|n = Sj|j + Aj(Sj+1|n − Sj+1|j)A
T
j .

Notice that the smoothed covariance is an end product in itself and does
not enter the recursion for the smoothed state vectors.

The interpolation smoother for ti−1 ≤ t < ti is

x(t | n) = X(t, ti−1)xi−1|i−1 + A(ti, t)(xi|n − xi|i−1) ,

S(t | n) = Ω(t, ti−1) + X(t, ti−1)Si−1|i−1X(t, ti−1)
T

− A(ti, t)(Si|i−1 − Si|n)A(ti, t)
T ,

where
A(ti, t) = {X(t, ti1)Si−1|i−1X(ti, ti−1)

T + Γ(ti, t)}S−1
i|i−1

and
Γ(ti, t) = λσ2R(t, ti)X(ti, t)

T .

Output from the Kalman filter permits the log likelihood to be written

L = −
n∑

i=1

1

2

{
ς2
i

σ2 + hT Si|i−1h
+ log(σ2 + hT Si|i−1h)

}
+ const .

If dealing with the diffuse prior explicitly we would drop the first m−1 terms
of the log likelihood and maximize this partial log likelihood over λ to ob-
tain the maximum likelihood estimate of the smoothing parameter for fixed
parameters in the model being considered. We then choose the model whose
fixed parameter values result in the smallest residual sum of squares because
the response surface for the partial log likelihood is not unimodal. Recall
that the residual sum of squares is the sum of the square of the differences
between the observed value and fitted value at the data points.
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4 Smoothness properties

The smoothness of the state vector estimate x(t | n) depends on the choice
of b. The smoothness of the point estimate also depends on bbT X(ti, t)

T .
Now

dx(t | n)

dt
= M(t,β)x(t | n) + bbT X(ti, t)

T S−1
i|i−1(xi|n − xi|i−1) . (10)

The only points at which the state vector can fail to have continuity is at the
points ti−1. The term bbT X(ti, t)

T in (10) is of interest. Looking at the jump
in the first derivative at the ith data point, after some manipulation, we get

dx(t+i | n)

dt
− dx(t−i | n)

dt
= bT h

{
ςi

σ2 + hT Si|i−1h
− 1

σ2
hT (xi|n − xi|i)

}
.

The jump vanishes provided bT h = 0 . The extension of this result to higher
derivatives is given below.

Result 1 The first k derivatives of x(t | n) are continuous only if

bT Pj(M(t,β))T h = 0 , j = 0, 1, . . . , k − 1 , (11)

where, for i = 1, 2, . . . ,

P0(M(t,β)) = Im , Pi(M(t,β)) =
dPi−1

dt
−M(t,β)Pi−1 .

If M(t,β) is a constant matrix, say M , then these Pi(M(t,β)) simplify
to (−1)iM i.
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5 Model selection examples

Consider the two following systems of differential equations:

dA

dt
= −k1A ,

dB

dt
= k1A− k2B ,

dC

dt
= k2B ; (12)

and
dA

dt
= −kA ,

dB

dt
= kA . (13)

In both cases the sum of the solutions will add up to a constant. The two
systems could be competing models for (say) a simple chemical reaction. Say
A > B > C against A > C with the parameters specifying the reaction rates
in the two cases.

The systems of differential equations can be rewritten as dx
dt

= Mx where

M =

 −k1 0 0
k1 −k2 0
0 k2 0

 and M =

(
−k 0
k 0

)
respectively.

5.1 Implications of choice of h and b

For the simpler model (13) h has to have a nontrivial component of e2

to be identifiable. In a similar manner the more complicated model (12)
h must have a nontrivial component of e3 to be identifiable. We must have
a component of the resultant species to be identifiable.

Suppose that we fit a generalised smoothing spline to the data using the
simpler model (13) with h = e2 and b = e1 . Using (11) to determine the
continuity properties of the generalised smoothing spline fit to the data we
have that

hT b = eT
2 e1 = 0 ,
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hT Mb = eT
1

(
−k 0
k 0

)
e2 = k .

The resultant curve fitted has one continuous derivative. If we had used
h = e2 and b = e2 instead the resultant curve would have no continuous
derivatives.

In a similar manner we could show that fitting a generalised smoothing
spline to the data using the other model (12) with h = e3 and b = e1

results in a fitted curve with two continuous derivatives. The state covariance
matrix involves both k1 and k2 and has full rank. If we use h = e3 and
b = e2 instead, the resultant curve has one continuous derivative. The state
covariance matrix involves only k2 and is semi positive definite.

If the best fit occurs when the smoothing parameter is small and the
resultant fit is smooth, then this is evidence that the model fits well. A
small smoothing parameter λ in (7) results in the stochastic forcing term
being negligible and the differential equation (2) being a plausible model.
Unfortunately, the definition of small depends on the data at hand which
is why as a precaution a plot of the fit with data superimposed should be
inspected as well.

5.2 Simulation

Suppose we observe C contaminated by noise for the system of n differential
equations

yi =
k2

k1 − k2

e−k1ti − k1

k1 − k2

e−k2ti + 1 + εi , i = 1, . . . , n .

Using n = 101 , data was simulated for various choices of k1 and k2 with a sig-
nificant noise component (roughly one tenth of the range of the signal in the
interval considered). We then first fitted the simpler system of equations (13)
to the data with

M =

(
−k 0
k 0

)
, h = e2 and b = e1 .
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Table 1: Partial log likelihood values for a selection of k using optimal λ.

k λ f rss k λ f rss
1.0 10−6 −28.3233 1.1288 0.1 10−6 −27.7779 2.1588
0.9 10−6 −28.2479 1.0206 0.01 97.45 −23.9686 1.9985
0.8 10−6 −28.2031 0.9496 0.001 1.082104 −19.4425 1.9831
0.7 10−6 −28.1933 0.9248 0.0001 106 −14.8537 2.0210
0.6 10−6 −28.2201 0.9552 0.00001 10−6 −10.7087 2.6229
0.5 10−6 −28.2792 1.0496 0.000001 106 −14.0190 7.5735
0.4 10−6 −28.3548 1.2151
0.3 10−6 −28.4059 1.4858
0.2 10−6 −28.3279 1.7720

The b has been chosen to ensure maximum continuity properties for the
generalised smoothing spline.

For the choice k1 = 1 and k2 = 2 simulated data the resultant fits for two
choices of k are given in Figure 1 along with the underlying signal. As well,
values of the partial log likelihood for the optimal smoothing parameter are
given in the Table 1 for a series of values of k in the simpler model (13) fitted
to the simulated data using a generalised smoothing spline. A local best fit
to the underlying signal occurs for k = 0.7 and λ = 10−6 which corresponds
to the residual sum of squares being smallest (rss=0.9248). Further inves-
tigation reveals a larger partial log likelihood for k = 0.00001 and λ = 10−6

but it has a much larger residual sum of squares (rss = 2.6229). This fit lies
close to a linear fit to the data. Except for the beginning of the data the sim-
pler model (13) fitted well for k = 0.7 . See in Figure 1 that for k = 0.00001
the simpler model does not fit well at all. For the two parameter generalised
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Figure 1: Generalised smoothing spline fits for simpler model for two choices
of k when the underlying signal has k1 = 1 and k2 = 2 . Solid line is true
underlying signal. Asterisks are the simulated data. Dotted line is two
parameter smoothing spline fitted to data (k1 = 3.6 and k2 = 0.9).
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smoothing spline model fitted to the data, using

M =

 −k1 0 0
k1 −k2 0
0 k2 0

 , h = e3 and b = e1 ,

we get λ = 10−6 for k1 = 3.6 and k2 = 0.9 giving the smallest rss over all
values of k1 and k2 considered where the smoothing parameter is chosen to
maximize the partial log likelihood. The resultant fit is better than that for
k = 0.7 in the one parameter smoothing spline model (rss=0.87359). This
fit is also plotted on Figure 1. The beginning of the data is captured better.
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