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Abstract

We investigate a new way of choosing combination coefficients
for the sparse grid combination technique. Previous work considered
choosing coefficients such that the interpolation error of sufficiently
smooth functions is minimised. We instead obtain an error bound using
an error splitting model of approximation error and seek coefficients
which minimise this. With minor modification this approach can also
yield extrapolations. There are also potential applications to fault
tolerance where new coefficients are required when a solution becomes
unavailable due to a fault. We test the approach numerically on a
scalar advection problem and compare with classical combinations from
the literature.
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1 Introduction

Recently there has been much interest in algorithms for high performance
computing which are able to recover from and/or adapt to process failures.
Harding [3, 4] showed how the combination technique, which approximates
sparse grid solutions, is adapted in the event of process failures by exploiting
the redundancies given by the many coarse grid approximations. The recovery
involves adapting the combination coefficients to avoid coarse grid approxi-
mations that were not computed successfully as a result of process failures.
Harding [3, 4] focused on updating the coefficients in a way that satisfies an
inclusion/exclusion principle over the hierarchical surpluses and minimises the
interpolation error for functions in H20,mix(Ω) := {u ∈ L2(Ω) : u|∂Ω = 0 and
Dαu ∈ L2(Ω) for all 0 6 α 6 2} . This is a somewhat optimistic strategy
that assumes that the error is dominated by the representation in sparse grid
space rather than from accumulation of truncation errors. In many compu-
tations this is not the case and thus in this article we consider a different
strategy.

Classical studies of the combination technique typically assume an error
model referred to as an error splitting [2]. For many problems, such models
are derived via multi-variate Taylor series expansions of the local truncation
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error. For example, finite difference and finite volume schemes can typically be
analysed in this manner [7, 8, e.g.]. Section 2 introduces error splitting models
and discusses how they are typically applied to the combination technique.
When accumulation of truncation error is the dominant source of error, and
the error splitting model is a good fit, then choosing coefficients based on
this model seems a reasonable approach. Section 3 shows how combination
coefficients are chosen to minimise a bound on the combination of the error
splitting terms. The problem of fitting the model to a given problem is also
briefly discussed. Section 4 tests this approach on a simple advection pde
in two dimensions and we compare these results with classical combinations,
combinations of multi-variate extrapolations, and combinations based on
interpolation estimates.

2 The combination technique and error
splittings

The combination technique has been studied extensively [2, 5, 1, 8]. Let
Ω = [0, 1] , for k ∈ N we define hk := 2−k and

Ωk := {0,hk, 2hk, 3hk, . . . , (2k − 1)hk, 1} .

Let Vk be the space of piecewise linear functions [0, 1] → R which interpolates
between function values given on the points in Ωk. These function spaces
are nested with Vk ⊂ Vk+1 for all k > 0 . High dimensional approximation
spaces are obtained via a tensor product formulation, for d > 2 and i =
(i1, . . . , id) ∈ Nd the domain Ωd is discretised over the grid points

Ωi = Ωi1 × · · · ×Ωid ,

leading to piecewise multi-linear function spaces Vi = Vi1⊗· · ·⊗Vid : Ωd → R .

Given a continuous function u ∈ V = C(Ωd) we define ui ∈ Vi to be an
approximation of u. The classical combination technique of level n takes
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several such approximations and combines them according to

ucn :=

d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
|i|=n−k

ui , (1)

where |i| = i1 + · · ·+ id . This combination approximates level n sparse grid
solutions and requires that ui be computed for i satisfying n− d < |i| 6 n .

The combination technique is adapted to other collections of i, given I ⊂ Nd
(finite, non-empty) we write

uI =
∑
i∈I

ciui (2)

for a combination over the multi-indices in I. Of course the challenge here
is to determine what the ci should be to obtain a good approximation to u.
The consistency property ∑

i∈I

ci = 1 , (3)

must be satisfied to ensure that constant functions, when computed exactly,
combine to the exact solution.

When the residual is easily estimated one may find ci which minimise∥∥u −
∑
i∈I ciui

∥∥ over an appropriate norm. This is typically referred to
as opticom [6]. However, for pde problems solved via finite difference or
finite volume methods the computation of a residual is usually not available.
The nature of such methods, whereby stencils are developed and/or anal-
ysed via Taylor series expansions, makes error splittings a suitable model for
estimating the error. We consider two error splittings from the sparse grid
literature [2, 8, 9].

Definition 1. An approximation algorithm Ai : V → Vi for i ∈ Nd satisfies
an order p (point-wise) error splitting if

u−Ai(u) =

d∑
k=1

∑
{j1,...,jk}
⊂{1,...,d}

γj1,...,jk(hij1 , . . . ,hijk )h
p
ij1
· · ·hpijk , (4)
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for all x ∈ Ω , i ∈ Nd with each of the γj1,...,jk(hij1 , . . . ,hijk ) bounded.

As a point-wise splitting, u, Ai(u) and the γj1,...,jk implicitly depend on
x ∈ Ωd . Error splittings of this type were used in classical error analysis of
the combination technique in two and three dimensions [2] and later extended
to all d > 2 dimensions [8]. A similar splitting may also be used to study
extrapolation techniques.

Definition 2. An approximation algorithm Ai : V → Vi for i ∈ Nd satisfies
an order p,q (point-wise) error splitting with q > p if

u−Ai(u) =

d∑
k=1

∑
{j1,...,jk}
⊂{1,...,d}

(
ηj1,...,jkh

p
ij1
· · ·hpijk

+ γj1,...,jk(hij1 , . . . ,hijk )h
q
ij1
· · ·hqijk

)
, (5)

for all x ∈ Ω , i ∈ Nd with each of the ηj1,...,jk ,γj1,...,jk(hij1 , . . . ,hijk ) bounded.

In Definition 2 the η do not depend on hij1 , . . . ,hijk . This splitting was used
to study the classical combination applied to multi-variate extrapolations as
the independence on the spatial discretisation allows the η to be eliminated
given appropriate combinations [9]. Often q = p + 2 is considered where
centred spatial discretisations are used. For example, second order centred
finite difference stencils eliminate odd order terms of the Taylor series such
that p = 2 and q = 4 is an appropriate error model.

Error splittings can be studied in the combination technique when the consis-
tency property (3) is satisfied as one has

u−
∑
i∈I

ciui =
∑
i∈I

ci(u− ui) . (6)

When the set of indices I is given and the ci known, an error splitting may be
substituted into the right hand side of (6) to study the error. By re-arranging,
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eliminating terms where possible and bounding remaining terms, a point-wise
error bound is calculated in a manner similar to the classical analysis [2].

3 Coefficients via error splittings

Rather than use the error splitting model to estimate the error for given
coefficients i ∈ I ⊂ Nd , we instead use the error splitting model to deter-
mine the best combination coefficients. In particular we wish to minimise∣∣∑

i∈I ci(u− ui)
∣∣ subject to the consistency property (3). If ui = Ai(u)

where Ai satisfies the order p error splitting, then∣∣∣∣∑
i∈I

ci(u− ui)

∣∣∣∣ = ∣∣∣∣∑
i∈I

ci

d∑
k=1

∑
{j1,...,jk}
⊂{1,...,d}

γj1,...,jk(hij1 , . . . ,hijk )h
p
ij1
· · ·hpijk

∣∣∣∣ (7)

6
d∑
k=1

∑
{j1,...,jk}
⊂{1,...,d}

∣∣∣∣∑
i∈I

ciγj1,...,jk(hij1 , . . . ,hijk )h
p
ij1
· · ·hpijk

∣∣∣∣ . (8)

Minimising (7) directly is difficult because the result is sensitive to the
γj1,...,jk(hij1 , . . . ,hijk ) which are typically not known, vary over the domain,
and may be difficult to estimate. Instead we look towards minimising some-
thing that bounds this term. In a classical combination, many of the γj1,...,jk
terms with k < d cancel, in particular those with ij1 + · · ·+ ijk 6 n− k . It is
therefore reasonable to expect that coefficients which minimise the summation
of error splittings would also involve the cancellation of many of these terms,
and thus our minimisation problem should facilitate this.

Given 1 6 k 6 d and {j1, . . . , jk} ⊂ {1, . . . ,d} we define Ij1,...,jk := {` ∈
Nk : ` = (ij1 , . . . , ijk) for some i ∈ I} . Similarly, given ` ∈ Nk we define
I`|j1,...,jk := {i ∈ I : (ij1 , . . . , ijk) = (`1, . . . , `k)} . With this notation we write
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the right hand side of (8) as
d∑
k=1

∑
{j1,...,jk}
⊂{1,...,d}

∣∣∣∣ ∑
`∈Ij1,...,jk

γj1,...,jk(h`1 , . . . ,h`k)h
p
`1
· · ·hp`k

∑
i∈I`|j1,...,jk

ci

∣∣∣∣
6

d∑
k=1

∑
{j1,...,jk}
⊂{1,...,d}

∑
`∈Ij1,...,jk

|γj1,...,jk(h`1 , . . . ,h`k)|h
p
`1
· · ·hp`k

∣∣∣∣ ∑
i∈I`|j1,...,jk

ci

∣∣∣∣ . (9)

We now consider the problem of finding ci which minimise (9). In this form
the problem is equivalent to minimising each of the

∣∣∣∑i∈I`|j1,...,jk
ci

∣∣∣ weighted
by the |γj1,...,jk(h`1 , . . . ,h`k)|h

p
`1
· · ·hp`k terms. We write this generically as

an L1 minimisation problem

minimize ‖Wc‖1 subject to 1Tc = 1 , (10)

where c is a vector of the {ci}i∈I with length n = |I| and W is a n ×
m matrix with m =

∑d
k=1

∑
{j1,...,jk}
⊂{1,...,d}

|Ij1,...,jk | . We solve this using glpk1 via

the equivalent linear programming problem

minimize ‖d‖1 subject to
[
W −I
−W −I

] [
c
d

]
6

[
0
0

]
with ‖c‖1 = 1 ,

where I is an m×m identity matrix and d is an m-vector.

An interesting problem is the estimation of each |γj1,...,jk(h`1 , . . . ,h`k)| term.
This is clearly problem dependant and depends on both u and the algorithmAi
used to approximate u. In practice, by comparing several Ai(u) one may
obtain rough estimates of such terms. For example, given a two dimensional
problem one has

A(i1,i2)(u) −A(i1−1,i2)(u) = [u−A(i1−1,i2)(u)] − [u−A(i1,i2)(u)]

= γ1(hi1−1)h
p
i1−1

− γ1(hi1)h
p
i1

+ γ1,2(hi1−1,hi2)h
p
i1−1

hpi2 − γ1,2(hi1 ,hi2)h
p
i1
hpi2 .

1gnu.org/software/glpk

gnu.org/software/glpk
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By increasing i2 such that the γ1,2 terms are negligible, and assuming that
γ1(hi1) ≈ γ1(hi1−1) for sufficiently large i1, one is able to estimate γ1. The
term γ2 is estimated in a similar fashion and γ1,2 is estimated via

A(i1,i2)(u) −A(i1−1,i2)(u) −A(i1,i2−1)(u) +A(i1−1,i2−1)(u) .

This can be extended to higher dimensions. There are times when the elements
of i may not be sufficiently large to accurately estimate the γj1,...,jk terms, for
example in high dimensions where it is too costly to compute i without some
of the components being small. Thus, in this article we also experiment with
generically setting each element of the γj1,...,jk to one.

When ui = Ai(u) satisfies the order p,q splitting the error bounds over the
η and γ terms are considered separately. In particular,∣∣∣∣∑

i∈I

ci(u− ui)

∣∣∣∣ 6∣∣∣∣ d∑
k=1

∑
{j1,...,jk}
⊂{1,...,d}

∑
i∈I

ciηj1,...,jkh
p
ij1
· · ·hpijk

∣∣∣∣
+

∣∣∣∣ d∑
k=1

∑
{j1,...,jk}
⊂{1,...,d}

∑
i∈I

ciγj1,...,jk(hij1 , . . . ,hijk )h
q
ij1
· · ·hqijk

∣∣∣∣.
The γj1,...,jk(hij1 , . . . ,hijk ) are bound in the same way as the inequalities (8)
and (9) (replacing p with q). For the ηj1,...,jk ,∣∣∣∣ d∑
k=1

∑
{j1,...,jk}
⊂{1,...,d}

∑
i∈I

ciηj1,...,jkh
p
ij1
· · ·hpijk

∣∣∣∣ 6 d∑
k=1

∑
{j1,...,jk}
⊂{1,...,d}

|ηj1,...,jk |

∣∣∣∣∑
i∈I

cih
p
ij1
· · ·hpijk

∣∣∣∣.
This introduces 2d − 1 additional terms to the minimisation problem (corre-
sponding to each of the ηj1,...,jk) which has the same generic formulation as
that of (10) but now with m = 2d − 1+

∑d
k=1

∑
{j1,...,jk}⊂{1,...,d} |Ij1,...,jk | . The

idea behind including these additional terms is that the coefficients generated
by the optimisation are typically such that these terms will sum to zero and
therefore the order p terms vanish, resulting in an order q approximation.
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4 Numerical results

We focus on two dimensional problems, testing the approach on a few different
index sets J ⊂ N2 . Our initial index sets are

Jn,τ,l := {i ∈ N2 : i1, i2 > τ and n− l < |i| 6 n} ,

with n, τ and l the level, truncation and layer count parameters, respectively.
We require n > 2τ for this set to be non-empty. The classical combination
coefficients for i ∈ Jn,τ,l with l > 2 are

ci =


1 if |i| = n ,
−1 if |i| = n− 1 ,
0 otherwise.

These combinations are compared with those using ci derived from the minimi-
sation of (9). We also compute a combination of multi-variate extrapolations
for second order schemes [9] which for i ∈ Jn,τ,l with l > 4 and n > 2(τ+ 2)
has coefficients

ci =



16
9

if |i| = n and i > (τ+ 1, τ+ 1) ,
−24
9

if |i| = n− 1 and i > (τ+ 1, τ+ 1) ,
−4
9

if |i| = n− 1 and i 6> (τ+ 1, τ+ 1) ,
1 if |i| = n− 2 and i > (τ+ 1, τ+ 1) ,
5
9

if |i| = n− 2 and i 6> (τ+ 1, τ+ 1) ,
−1
9

if |i| = n− 3 ,
0 otherwise.

(11)

By i > (τ + 1, τ + 1) we mean i1 > τ + 1 and i2 > τ + 1 . Similarly,
i 6> (τ+1, τ+1)means i > (τ+1, τ+1) and i 6= (τ+1, τ+1) . The combination
using the coefficients of equation (11) are compared with combinations where
the ci are derived from the minimisation of the order p,q error splitting.
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Following this we look at several different randomly chosen subsets J ⊂ J16,4,9
with E[|J|] = 0.8|J16,4,9| (with E[|J|] the expectation of the number of elements
in J) and compare the combinations obtained by minimising the error splitting
estimates with those based on minimising interpolation estimates, as shown
by Harding et al. [4].

Our tests are performed on a simple advection problem

∂u

∂t
+ 1T · ∇u = 0 ,

for u : [0, 1]2 → R with initial condition u0 = cos(2πx) sin(2πy) and periodic
boundary conditions. We evolve up to t = 0.25 using second order centred
finite difference discretisation of spatial derivatives and the classical fourth
order Runge–Kutta scheme for integration over time (thus p = 2 and q = 4
in the error splitting models).

Figure 1 compares the rate of convergence of several methods starting with
the index set J12,4,4 and then refining each grid uniformly by a factor of two for
subsequent computations (corresponding to index sets J14,5,4, J16,6,4 and J18,7,4).
We observe that the classical combination and the order p error splitting result
have the same order of convergence (two) and have very similar results in
general. The combination of extrapolations and the order p,q error splitting
both exhibit a higher rate of convergence (four) and the order p,q error
splitting result outperforms the combination of extrapolations by a factor of
approximately two. A generic weighting of |γj1,...,jk | = |ηj1,...,jk | = 1 is used in
these tests. For different starting sets the results for order p,q error splitting
are not always so nice and the rate of convergence may sometimes drop back
to roughly second order. It is currently not clear exactly when or why this
occurs but we believe it to be related to the instabilities which are typical in
extrapolation methods. However, Figure 1 shows there are ranges in which
the extrapolation behaves particularly well.

Table 1 compares the error splitting based coefficients with those obtained
via interpolation estimates (referred to as gcp), as done by Harding et al. [4]
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Figure 1: Starting with J12,4,4 we compare the combinations (1), (11) with
combinations computed using coefficients derived from the error splitting
estimates. The grids of J12,4,4 are refined in both spatial dimensions several
times and the computations repeated.
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on random subsets of grids. We take a random sample J ⊂ J16,4,9 with
each multi-index in J16,4,9 appearing in J with probability 0.8. We then
compute coefficients using the different approaches and compare the resulting
combinations. On the left of the table the first ten samples use the generic
unit weighting |γj1,...,jk | = 1 for the error splitting approach (and similarly
for η). We see that the gcp approach outperforms the order p error splitting
coefficients (p split). The order p,q error splitting coefficients (p,q split)
have higher order convergence and thus this splitting outperforms the order p
splitting results but only outperforms the the gcp approach in seven of ten
cases. On the right of the table we have an additional ten samples where
the γj1,...,jk are weighted with a rough estimate of ‖γj1,...,jk‖∞ for the error
splitting approaches (and similarly for η). This rough estimate leads to
significant improvements in the ‘p split’ results which typically yields similar
combination coefficients to the gcp approach but outperform in some cases.
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Table 1: L1 error for combinations obtained via interpolation (gcp) and
error splitting (‘p split’ and ‘p,q split’) estimates for the combination error
over 20 random samples J ⊂ J16,4,9 with each element having an 80% chance
of appearing in J. The first ten samples use the generic unit weighting
|γj1,...,jk | = 1 whilst the last ten samples use an estimate of ‖γj1,...,jk‖∞ .

unit weighting ‖γj1,...,jk‖∞ estimate
sample gcp p split p,q split gcp p split p,q split
1 2.6e−6 3.7e−6 7.9e−7 1.5e−6 1.5e−6 1.3e−6
2 1.3E-6 3.1e−5 1.5e−6 2.6e−6 2.6e−6 1.3e−6
3 3.3e−6 7.9e−6 4.7e−6 1.2e−6 1.2e−6 3.7e−7
4 1.2e−6 3.7e−6 7.2e−7 1.2e−6 1.2e−6 3.7e−7
5 3.3e−6 3.6e−6 7.9e−7 1.5e−6 1.5e−6 2.3e−7
6 1.9e−6 3.0e−5 1.6e−6 1.5e−6 1.3e−6 3.7e−7
7 1.3e−6 7.9e−6 4.1e−7 2.6e−6 1.2e−6 3.7e−7
8 2.6e−6 3.6e−6 3.7e−6 1.2e−6 1.2e−6 2.8e−5
9 2.6e−6 1.3e−5 5.4e−7 1.8e−6 1.6e−6 2.4e−7
10 1.6e−6 3.1e−5 7.9e−7 2.8e−6 2.8e−6 1.7e−6
mean 2.2e−6 1.3e−5 1.5e−6 1.8e−6 1.6e−6 3.4e−6
stdev 0.8e−6 1.2e−5 1.5e−6 0.7e−6 0.62e−6 8.6e−6

The ‘p,q split’ results also improve and outperform the other approaches
with the exception of one outlier. We conclude that the error splitting
based coefficients can outperform the gcp approach when an error splitting is
applicable and the γj1,...,jk are estimated with reasonable accuracy. Without
this estimate of γj1,...,jk the error splitting results are mixed and appear to be
less robust than the those obtained with the gcp approach.
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Conclusions

A new way to compute combination coefficients based on error splitting models
was developed and tested on a simple advection problem. Whilst these initial
results are promising there are several aspects of this work which could be
investigated in more detail. Table 1 demonstrates that the solution is sensitive
to the relative size of the constants ‖γj1,...,jk‖∞ in the error splitting model. It
would be interesting to study how sensitive the solution is to these constants
and determine alternative methods of estimating them. The approach was
tested on a simple advection problem for which the error splitting model
is known to hold [7]. Evaluating the robustness of the approach on more
complex problems and higher dimensional problems will be explored in the
future. Experience suggests that whilst this approach may work in some
cases, results based on interpolation estimates, as calculated by Harding et
al. [4], are more robust.
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