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How accurate is Beer’s Law in the analysis of
NIR Data?
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Abstract

To construct a predictor of the proportional presence of some key
component in a material, we assume that the near infrared (nir) re-
sponses of the various component proportions are given by Beer’s
law. Using a set of nir spectra of milk powder spiked with different
amounts of casein, this assumption is tested by comparing different
properties of this set of spectra with the equivalent properties of sim-
ulated spectra obtained by combining the spectrum of unspiked milk
powder with the spectrum of casein, in the same proportions. The
latter set of spectra corresponds to the situation where Beer’s law holds
exactly with no cross-interaction between the two linearly independent
components, and, thereby, described by a rank-two row matrix. The
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former corresponds to what happens in practice with the possibility of
cross-nir-interaction occurring between the components. The degree
to which Beer’s law is likely to fail is examined. It is shown how spiking
allows the identification of the casein wavelengths that are strongly
independent of the nir spectral responses of the other components in
the milk powder. However, there are slight deviations from Beer’s law
and these are, in part, explained by diffraction effects.
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1 Introduction

In nir spectroscopy corrected for scattering effects, a key assumption is that
the individual spectral responses of the various components in the material
combine linearly in accordance with Beer’s law. Essentially, Beer’s law says
that the nir spectrum of a mixture of q components is a weighted sum of
the spectra of the components, with the weights being the proportions of the
components in the mixture. That is, if the spectra of the q components are
given by the vectors v1, v2, . . . , vq , say, then the spectrum of a mixture, with



1 Introduction C230

Table 1: The casein spiking fractions.
Sample Number k 1 2 3 4 5 6 7 8

Casein fraction 0 .0503 .1055 .2137 .4005 .5995 .6612 1.

components in the proportions given by the vector p = (p1,p2, . . . ,pq) with
pi > 0 , is

v =

q∑
i=1

pivi , with
q∑
i=1

pi = 1 . (1)

The current investigation studies the spectra of milk powder spiked with
different proportions of casein, with casein the dominant protein found in
whole milk powder. In whole milk powder, the proportion of casein is
about 30% and makes up about 80% of the protein-content. In this way,
an analysis of Beer’s law is reduced to analysing the spectra of the q = 2

component systems of milk powder and casein. The motivation is the need
to check, for different materials, the extent to which Beer’s law holds [6]. As
explained by Dahm [6], the effect of the diffraction scattering is not purely
linear and consequently Beer’s law will only hold approximately for the second
derivative spectra. Therefore, using samples spiked with the components of
interest (casein in milk powder in the present situation) represents a natural
way to check the extent to which Beer’s law holds for combinations of different
materials.

Specifically, in this article, the spectra analyzed are of spiked samples with
the proportions of milk powder and casein given in Table 1.

Scattering has a major effect on the measurement of an nir spectrum and
is often modelled as a linear trend that is removed from the spectral data
by taking second or higher differences [1, 2, 4, 5]. The spectra is often then
smoothed as an aid to visualisation, which is also done here. For n = 8 samples
and m the number of wavelengths at which the spectra are recorded, let the
vector sk ∈ Rm (k = 1, 2, . . . ,n) denote the second derivative spectrum of the
kth sample. The associated smoothing aids the visualization of differences
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between the spectra. However, such smoothing has minimal quantitative
effects on the results and conclusions.

Let
ST = (s1, s2, . . . , sn) , (2)

with the rows of S corresponding to the spectra of the two-component mix-
tures. The smoothed second derivatives of the eight spectra are plotted
in Figure 1. Since each spectrum sk, with k = 1, 2, . . . ,n , is a mixture
of just two components (namely, milk powder and casein), equation (1) is
used to construct an approximation to the spectrum sk. Let f ∈ Rn denote
the vector of the entries which are the fractions of casein added (Table 1)
and let e = (1, 1, . . . , 1)T ∈ Rn . Then the theoretical nir spectra of the
two-component mixtures, satisfying Beer’s law, are

ŝk = s1(1− fk) + snfk, s1 = pure milk powder, sn = pure casein. (3)

It follows that the Beer’s law counterpart of S is given by

ŜT = (ŝ1, ŝ2, . . . , ŝn) = s1(e− f)T + snfT , (4)

on taking account of ŝ1 = s1 and ŝn = sn . The rows of Ŝ are plotted in
Figure 2.

Although Figure 1 and Figure 2 look qualitatively similar, this is in part be-
cause the differences in the row spectra are small compared to their amplitudes,
which makes a visual comparison difficult.

In the analysis of nir data, it is standard practice to mean-centre the columns
of S [7]. We therefore replace S and Ŝ with their corresponding mean-centred
counterparts

C =
(
I− 1

n
eeT
)
S , (5)

and

Ĉ =
(
I− 1

n
eeT
)
Ŝ

=
(
I− 1

n
eeT
)
[(e− f)sT1 + fs

T
n]

=
(
I− 1

n
eeT
)
f(sn − s1)

T . (6)
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Figure 1: A plot of the second derivative of the measured spectra, for different
wavelengths [600 + 2 × (x-axis value)] nm, for the eight casein spiked milk
powder samples.

 

The column vectors of C and Ĉ are denoted by ci and ĉi, respectively, with
i = 1, 2, . . . ,m .

Equation (6) is a direct consequence of the mean-centering relationship(
I− 1

n
eeT
)
e = 0 .

The benefit of performing the mean-centering is that Ŝ is replaced with the
rank one matrix Ĉ, thus simplifying the subsequent analysis.
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Figure 2: A plot of the second derivative Beer’s law spectra for the eight
casein spiked milk powder samples, as a function of wavelength [600+ 2×
(x-axis value)] nm, generated using equation (3).

 

2 Beer’s Law

Plots of the rows of C and Ĉ are given in Figures 3 and 4, respectively. The
similarities and differences between real and simulated spectra are now much
more apparent. For example, a comparison of the structure of peaks and
troughs in Figure 3 (Figure 4) with their counterparts in Figure 1 (Figure 2)
shows clearly that differences in spectra have become more pronounced by
being more widely separated about the zero line of the mean-centering.
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Figure 3: Plots of the rows of C: mean-centered second derivatives of the
measured spectra for the eight spiked samples, as a function of wavelength
[600+ 2× (x-axis value)] nm.

 

It follows from (6) that, for a two-component mixture, Ĉ is a rank one
approximation of C. This rank one approximation is a basis for assessing
the extent to which Beer’s law holds for the spectra S of the spiked data.
For example, it implies that, if Beer’s law is a good approximation for the
structure in the observed spectra S, then the matrix C will be similar to Ĉ;
a plot of the values of the matrix elements of C against the corresponding
values of Ĉ will approximate a straight line, as illustrated and confirmed in
Figure 5.
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Figure 4: Plots of the rows of Ĉ: mean-centered second derivatives of the
Beer’s law spectra for the eight spiked samples, as a function of wavelength
[600+ 2× (x-axis value)] nm.

 

Figure 5, because of the clustering of the points about the line of equality
(high correlation), yields qualitative support for the approximate validity of
Beer’s law for the casein spiked milk powder. Further insight is obtained by
considering the relationship between C and Ĉ from a number of independent
perspectives.

Figure 6 plots the values of cTi ci, i = 1, 2, . . . ,m , as a function of wavelength.
The magnitudes of cTi ci are a measure of the nir molecular response to
the spiking of the milk powder with the casein, with the peaks identifying
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Figure 5: The scatter plot of the matrix elements of C plotted against the
corresponding elements of Ĉ.

 

the wavelengths of the molecular components in the casein most sensitive
to the changing levels of the spiking. Identifying the strong peaks is an
alternative way of identifying the wavelengths of the molecular components
in the casein which are most sensitive to an nir stimulus, which is consistent
with the information recorded in an nir spectrum of some given material,
such as casein in milk powder. As is clear in Figures 1 and 2, the spectra
will change only slightly at wavelengths not sensitive to the presence of the
casein, whereas there will be proportional changes at the wavelengths which
are strongly sensitive to the presence of the casein.

The identification of sensitive wavelengths represents indirect measurements
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Figure 6: The plot of cTi ci, i = 1, 2, . . . ,m, as a function of wavelength
[600+ 2× (x-axis value)] nm.

 

of the molecular components of a material most sensitive to an nir stimulus.
In addition, the peaks of cTi ci, i = 1, 2, . . . ,m, represent further support for
the validity of Beer’s law as the peaks occur where there is a strong correlation
between spectra of Figure 3 and Figure 4.

An alternative way of highlighting the relationship between C and Ĉ is given
in Figure 7, where we plot

cTi ĉi/
√
‖ci‖ · ‖ĉi‖ = cos(θi) , i = 1, 2, . . . ,m ,

where the θi denote the angles between the vectors ci and ĉi. The importance
of this result is that it shows that the peaks in Figure 6 occur when the
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Figure 7: A plot of the cos(θi) for different wavelengths [600 + 2 ×
(x-axis value)] nm.

 

vectors ci and ĉi are strongly aligned with cos θi ∼ 1 (approximately parallel),
whereas the other regions correspond to situations where the vectors ci and ĉi
are not strongly aligned.

3 The calibration

The popularity of nir spectroscopy arises from the ease and speed with
which it can be utilized, once the calibration step is performed, to predict
such things as the protein content in wheat, the casein content in milk and
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whether pepper is adulterated. Various methods were proposed for performing
the calibration step including the widely used partial least squares (pls) [7]
procedure. For the mean-centred matrix of second derivative spectra of the
casein spiked milk powder, the calibration step corresponds to estimating an
appropriate solution of the under-determined system of equations

Cx =
(
I− 1

n
eeT
)
f = f̃ , (7)

such as the pls solution xpls. The corresponding pls predictions of the added
casein fractions are then determined as

fpls(k) = x
T
plssk , k = 1, 2, . . . , 8 . (8)

The pls solution xpls is plotted in Figure 8(a) along with a scatter plot in
Figure 8(b) of the pls predicted fractions of added casein fpls(k) as a function
of the actual added casein fractions fk, k = 1, 2, . . . , 8 .

A visual comparison of the peaks cTi ĉi in Figure 7 with those in the pls
solution xpls in Figure 8(a) shows a very strong correlation. The correlation
provides support for the conclusion that the information recovered by pls is
consistent with Beer’s law and identifies the wavelength components in the
spectra which have a strong correlation with the measured proportions of
the component being calibrated. It also gives support for the methodology
proposed by Anderssen et al. [3] which uses derivative spectroscopy to recover
information about the relevant wavelengths.

4 The single wavelength analysis

An interesting related question is the extent to which a single wavelength
might be a good predictor of the added casein fractions. The motivation for
exploring such a question in the current situation is the strong dominant peak
in cTi ci, at the wavelength ≈ 2198nm (at i = 799) in Figure 6, and in the pls
solution xpls in Figure 8(a).
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Figure 8: (a) The pls solution of the under-determined system of equations (7).
(b) Scatterplot of the pls predictions of the fractions of added casein as a
function of the actual added casein fractions.

(a)
 

(b)
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For the subsequent discussion, let C` denote the column vector of C at the
wavelenth 2198 nm. Least squares minimization, with f̃ defined in equation (7),
gives

min
αi

‖αici − f̃‖2, i = 1, 2, . . . ,m ,

and determines the multipliers

αi = (cTi f̃)/(c
T
i ci) ,

for solving this least squares problem for corresponding choice of ci.

Two possibilities are examined.

• For column vector C`, the corresponding value of α` is plotted in Fig-
ure 9(a), while Figure 9(b) plots the values of the column vector α`C`,
which predicts the fractions of added casein as a function of the ac-
tual casein fractions. The pls predictions fpls(k) of equation (8) are
also plotted in 9(b). It is clear from this plot that the least squares
predictions α`C` compare favourably with the pls predictions.

• Find the largest value of the αi. Let it and its corresponding column be
denoted by αJ and cJ. In terms of the plot in Figure 7, cJ corresponds to
the column where cos(θJ) is closest to the value one, and this corresponds
to the angle between ci and ĉi being the closest to zero. For column
vector cJ, the corresponding value of αJ is plotted in Figure 10(a), while
Figure 10(b) plots the predicted fractions of added casein αJcJ as a
function of the actual casein fractions.

It is clear from Figures 9 and 10 that the least squares αJcJ predictions
compare favourably with the pls predictions.

5 Conclusions

On the basis of the above considerations and comparisons, it appears that,
globally, Beer’s law holds for the spiked milk powder spectra of Figure 1.
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Figure 9: (a) The value of α` at the wavelenth 2198nm (x-axis value 799) of
the maximum response. (b) Scatterplot of the pls (*) and least squares α`C`
(+) predictions of the fractions of added casein as a function of the actual
added casein fractions.

(a)
 

(b)
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Figure 10: (a) The value of αJ which corresponds to the largest value of the αj.
(b) Scatterplot of the pls (*) and αJcJ (+) predictions of the fractions of
added casein as a function of the actual added casein fractions.

(a)
 

(b)
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However, as illustrated in Figures 6 and 7, when the nir response is locally
small, rounding error is likely to reduce confidence in Beer’s law. Consequently,
in practice, when making inferences based on comparing the nir spectral
responses of different property compositions of the same basic material, such
as for different wheat varieties, only the regions of highest spectral intensity
should be used. This is the essence of the approach outlined in Figures
9 and 10. In addition, in the utilization of the spectra in a calibration and
prediction situation which assumes the validity of Beer’s law, such a strategy
minimizes the effect of second order non-linear diffraction scattering and
circumvents the concerns raised by Dahm [6].

Not only does the current investigation give credence for the validity of Beer’s
law of nir spectral analysis, it also gives support to the methodology proposed
by Anderssen et al. [3] which is a more intuitive way of identifying the nir
spectral wavelengths which identify the spectral structures that provide the
required information from the data.
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