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Abstract

The behaviour of the magnetic field produced by spherical kine-
matic dynamos at large magnetic Reynolds number for two station-
ary axisymmetric roll flows is examined. Five numerical techniques
to solve the large banded eigenvalue problems, which arise for the
growth rate of the magnetic field, are compared, particularly their per-
formance when eigenvalues are closely clustered. The five eigenvalue
methods are inverse iteration, orthogonal iteration, lop-sided itera-
tion, the implicitly restarted Arnoldi method and the non-symmetric
Lanczos method. A shift and invert strategy was employed to obtain
the growth rates of largest real part.
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1 Introduction

We consider the magnetic stability of the steady state B = 0 for a sphere V of
radius l filled with incompressible, homogeneous, electrically conducting fluid
undergoing a prescribed axisymmetric roll motion v, and surrounded by an
insulating exterior. The magnetic field B satisfies the non-dimensionalized
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problem:

∂B

∂t
= ∇2B + Rm∇× (v ×B) in V ;

∇ ·B = 0 in all space; (1)

[B]∂V = 0 ; B → 0 as r →∞ ;

where Rm = vl/η is the dimensionless magnetic Reynolds number, v is a
typical speed and η is the magnetic diffusivity. The non-dimensionalized
radius of V is 1. We seek magnetic solutions of the form B(r, t) = B0(r)e

λt ,
in which case (1) becomes an eigenproblem for the growth rate λ of largest
real part.

The standard method to solve the discretised form of the problem, as
described in Section 2, is inverse iteration, since only one eigenvalue is sought.
However, for the roll flows considered, the eigenvalues cluster for large Rm

and, moreover, the imaginary parts are O(R
1/2
m ) larger than the real parts.

Thus inverse iteration has great difficulty in distinguishing the various modes
without an accurate estimate for the eigenvalue. Use of the QR-algorithm
to find all eigenvalues is infeasible due to the size of the problem. Instead,
we compare the sparse eigenvalue methods described in Section 3, which
calculate several eigenvalues at once. Results are given in Section 4 and
conclusions in Section 5.

2 The spectral/finite-difference approach for

spherical dynamos

The solenoidal fields B, v and ∇× (v×B) are first decomposed into toroidal
and poloidal fields,

B = T[T ] + S[S] , v = T[t] + S[s] , ∇× (v ×B) = T[T̃ ] + S[S̃] .
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This reduces the magnetic induction equation (1) to two scalar equations.
Next the poloidal and toroidal scalar potentials are expanded in complex-
valued spherical harmonics.

f =
∑

γ

fγ(r, t)Yγ(θ, φ) , where f = s, t, S, T, S̃, T̃ .

The double index γ represents the duple (nγ, mγ). Substituting these into
the toroidal and poloidal magnetic induction equations, and collecting the
coefficients of Yγ yields the Bullard and Gellman [1] equations,

(∂t −Dγ)Sγ = RmS̃γ , (∂t −Dγ)Tγ = RmT̃γ , (2)

with Dγ = r−2{∂r(r
2∂r)− nγ(nγ + 1)} the spherical Bessel operator.

The interaction terms on the right side must be expressed in terms of
the spectral components of B and v. The ensuing relations are complicated
and involve the evaluation of seven coupling integrals composed of Wigner
coefficients and products of the magnetic and velocity potentials, and their
radial derivatives:

S̃γ =
∑
α,β

{(sαSβSγ) + (sαTβSγ) + (tαSβSγ)} ;

T̃γ =
∑
α,β

{(sαSβTγ) + (sαTβTγ) + (tαSβTγ) + (tαTβTγ)} .

Each term is a coupling integral, which represents the contribution to the
γ mode of S or T from the interaction of the fluid velocity’s α toroidal/
poloidal mode with the magnetic field’s β toroidal/poloidal mode. The sum
then includes the contribution from every possible interaction between the
toroidal and poloidal modes of v and B. Note that a toroidal velocity field
cannot generate poloidal magnetic field from toroidal magnetic field. We omit
the explicit expressions for the coupling integrals. For full details see [1, 6].

We actually employed a slightly alternative formulation of the spectral
equations in which we make use of vector spherical harmonic expansions of
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both B and v. A hybrid of the vector spherical harmonic approach and the
toroidal-poloidal approach yields spectral equations which are algorithmically
simpler than the latter. They involve only two relatively simple coupling
integrals making the computation of the linear equation matrix easier to
program and less prone to error. We omit the full details, see [4, 5].

After discretising the radial interval into J segments we introduce into Dγ

and the coupling integrals centred finite differences for the interior points
and a one-sided right boundary scheme for r = 1 . Truncate the number of
harmonics, allocating N each to both S and T . The choice of which of these
modes to include can be an intricate business. We determine which ones
to include via observing the ‘selection rules’ of the coupling integrals which
are closely related to those of the Wigner coefficients. For axisymmetric
velocity flow we find that only magnetic modes of the same azimuthal wave
number m contribute to each other. In other words mβ = mγ = m . The
azimuthal dimension separates out and we install m as a constant parameter.
We may not choose m = 0 . Cowling’s theorem ensures decaying modes in
this case because v is also axisymmetric.

This done (2) reduces to a large numerical eigenproblem,

(A + RmB)x = λx , (3)

in which A,B are complex, non-symmetric, and nearly block tridiagonal
for second-order finite-differences. The size of the blocks is 2N except one
N sized block arising from the boundary condition. The total matrix sizes
are N(2J − 1) . The eigenvalues {λi} determined from this system depend
on J , N and Rm. We regard these as valid approximations if increasing
J and N induces negligible change in them.
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3 Linear eigenvalue methods

Throughout we assume that our generic matrix M is non-defective and of
fixed order n. Its eigenvalues λ1, . . . , λn are indexed so that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn| .

For a fixed integer h < n with |λh| > |λh+1| there is a unique invariant
subspace Uh, for which the first h dominant eigenvectors of M are a basis.

Inverse iteration is the standard method if only one eigenvalue is sought.
Under reasonable restrictions it produces good approximations to the domi-
nant eigenvector of (M− µ)−1 and hence the eigenvalue closest to the given
shift µ. If we begin with a random vector v0 the approximation generated
by the kth step is vk+1 = α(M− µ)−1vk where α is some normalization. Of
course the inverse is not explicitly formed, vk+1 is determined by a direct
solving routine.

It only takes one eigenvalue with positive real part to reverse the magnetic
stability. One may then think that inverse iteration is the only method
needed in this context. For low magnetic Reynolds numbers this is usually
true. But for large Rm we find that the leading modes begin to cluster. Not
only does this slow the convergence of inverse iteration, but it also makes it
difficult to isolate the eigenvalue of largest real part. Due to the size of our
problems the complete eigensolution (via the QR-algorithm) is out of the
question and we resort to partial sparse eigenvalue methods.

The methods discussed here approximate the dominant (extremal) eigen-
values first. To obtain approximations to eigenvalues of largest real part we
employ a shift and invert strategy (as in inverse iteration). Consequently our
algorithms require direct solving steps and hence an LU -decomposition. The
matrices with which we deal are banded and large, but not so large as to make
this computation prohibitively expensive. The banded LU -decomposition
costs about 2npq complex flops where p = 2N is the upper band width and
q = 4N is the lower bandwidth.
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In the following section we outline the standard algorithms only. For the
shift-inverse versions replace M with (M− µ)−1 and λi by (µ− λ∗i )

−1 where
λ∗i is the ith closest eigenvalue to the shift µ.

3.1 Simultaneous iteration methods

A simultaneous iteration method is a power method for subspaces. Let
h starting vectors make up the columns of the initial matrix Q0 upon which
we iterate.

3.1.1 Orthogonal iteration (OI)

This variant consists primarily of two steps, a power step MQk = Zk and a
QR factorization Zk = Qk+1Rk. The second step maintains the independence
of the columns of Qk. Without it we would end up with h copies of the dom-
inant eigenvector. It can be proved that the columns of Qk converge to the
first h dominant Schur vectors of M. The rate of this convergence is variable.
For the ith vector it goes like O(|λi+1/λi|k) just like the power method. For
clustered eigenvalues this rate is generally unacceptably slow. Stewart [10]
proposed an additional ‘srr’ step, which is performed intermittently and has
a convergence rate of O(|λr+1/λi|k) . It projects M onto the subspace Qk

and computes its Schur form. The new subspace Qk+1 is determined by right
multiplying Qk by the matrix of calculated Schur vectors.

3.1.2 Lop-sided iteration (LSI)

We outline the basic structure of the algorithm given by Lehoucq et al. [7].
Step 1 forms the projection of M onto Qk, H = Q−H

k MQk . Because the Qk

are non-unitary in general, this requires a linear solving substep. Step 2
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eigensolves for the projected matrix VH = DV, where the columns of V
are H’s right eigenvectors. Step 3 constructs the new subspace Qk+1 =
MQkV . The algorithm forces the Qk to converge to the matrix of dominant
eigenvectors, the ith column converging with rate O(|λh+1/λi|k) .

3.2 Krylov subspace methods

These methods exploit the attractive properties of Krylov subspaces,

Km(u0,M) ≡ span{u0,Mu0, . . . ,M
mu0} .

Each method computes an orthogonal basis for Km(u0,M) , adding an ex-
tra basis element per iteration and stopping when the space becomes M-
invariant. At this point the eigenvalues extracted from M’s projection in
Km(u0,M) are excellent approximations. However, round-off error usually
ensures the iteration never terminates. We truncate the process when a
specified number of Ritz values (projected eigenvalues) converge sufficiently.

3.2.1 Non-Hermitian Lanczos method (NHLM)

This method computes two bi-orthogonal bases for Km(u0,M) so that M’s
oblique projection is tridiagonal. Because of the ensuing simple three term
recurrence relation a practical and speedy algorithm simply determines the
projected matrix entry by entry negating the need for the storage of both
basis sets. This allows us to build very large projections with access to a
sizable portion of the spectrum. However, leaving the bases unstored renders
their orthogonality extremely vulnerable to round-off error. This manifests
itself in the intermittent recomputation of those basis elements spanning the
most dominant sections of the Krylov subspace. Thus the projected matrix
will be ‘encoded’ with multiple copies (or ‘ghosts’) of the most dominant
eigenvalues. The existence of spurious eigenvalues is another problem, these
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arise because of the truncation of the Lanczos iteration. They are in fact
unconverged approximates. For more details see [3].

3.2.2 Implicitly restarted Arnoldi method (IRAM)

The basic Arnoldi iteration computes a single orthogonal basis so that M’s
projection is upper-Hessenberg. This means the entire Arnoldi basis is re-
quired at every step. Its storage requirements consequently prohibit very
large subspaces being generated. Also the information about M’s extremal
eigenvalues need not emerge within the generated subspace particularly quickly.
Convergence largely depends on the choice of the initial vector u0. This
coupled with restrictions on the number of iterations may compromise the
convergence of the Ritz values.

One response is the restart idea by which the Arnoldi factorization is
begun anew with a fresh initial vector chosen from the span of the previ-
ously computed Arnoldi vectors. This restart vector is chosen so that better
approximations to desirable eigenvectors can be found in the new Krylov
space. There are a number of ways this can be done. We employed the
method of Sorenson which determines the restart vector implicitly using the
shifted QR iteration (for details see [8, 9, 3]).

4 Results

We analyse the two axisymmetric roll flows [2] with toroidal/poloidal spher-
ical harmonic expansions:

v1 = σs0
1 + t0

1 , v2 = σs0
1 + t0

1 + t0
3 ,

where s0
1 = sin πr for both flows and

t01 = − 4
5
√

3
r2 sin πr , t03 = 2

15
√

7
r2 sin πr ,
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for v1 and t01 = s0
1 for v2. The parameter σ measures the poloidal flow

speed compared to the toroidal speed. We set m = 1 in all calculations and
obtain growing modes for certain values of σ. For v1 we let σ = 0.2050 and
for v2 σ = 0.1373 . Rm varies from 0 to 500, 000. At the highest Rm fourth-
order finite-differences are used (which doubled the bandwidth), at lower Rm

second-order finite-differences suffice.

The eigenvalue methods were programmed in Fortran using routines from
the lapack library. For the iram we used the routines from arpack. Our
machine was a Compaq/Digital Alpha 2 cpu, 3GB memory, es40.

4.1 Behaviour of eigenvalues

Converged results were obtained for the first few leading eigenvalues but
our truncation levels had to be increased for larger Rm. This suggests that
the length scales of the eigenvectors decrease and more modes couple as
Rm increases.

To obtain converged results for two leading modes at Rm = 500, 000
we required N = 30 and J = 1000 , yielding matrices of size 60, 000. For
smaller Rm more leading eigenvalues had converged sufficiently. At the ex-
tremal end of the spectrum (eigenvalues of very large negative real part)
convergence could not be obtained at our maximum truncation level for
any Rm. This suggests possibly that the faster a mode decays the smaller
its length scale. This picture is complicated though at lower Rm when the
growth rates follow particularly tangled trajectories in the complex plane on
increasing Rm. However, we find that for Rm > 5, 000 and for both flows the
trajectories of the leading modes converge to the branches of closely spaced
parabolas centred at the origin. Moreover, their imaginary parts approach
one another. As the imaginary parts are O(R

1/2
m ) larger than the real parts,

inverse iteration has great difficulty in distinguishing the various modes with-
out an accurate estimate for µ. For example, the leading four v2-eigenvalues
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at Rm = 50, 000 are 201.5+26147.8 i , −245.8+25672.4 i , −325.4+24678.9 i ,
and −250.8 + 23573.1 i .

4.2 Performance of eigensolvers

We compare the robustness, maximum number of eigenvalues computable
and computational speed of each method as their accuracy levels and Rm are
varied.

The iram uncovered a maximum of 40 leading eigenvalues and lsi a max-
imum of 35 for any Rm at relative accuracy 10−6. Method oi could manage
14 when Rm < 10, 000 , but convergence slowed to prohibitive levels when
searching for more than 8 when Rm was larger. oi’s speed of convergence was
very sensitive to choice of shift and the distribution of eigenvalues. Despite
the ssr step if a shift lay equally between two eigenvalues convergence was
extremely slow or non existent. Storage requirements (other than for M)
were of O(nh) for these three methods, this limited the maximum number
of eigenvalues obtainable.

The nhlm produced large numbers (≥ 500) of ‘eigenvalues’ but (depend-
ing on accuracy levels and the shift) at best nearly a half were true, the rest
being copies or spurious. These had to be sorted. Convergence was ascer-
tained from a calculation of their residual norms. However, this provides
only a guide as M is non-Hermitian. The maximum residual norm toler-
ated was 10−6 which ensured most accepted eigenvalues had converged to at
least 10−6 in relative error. There were a few exceptions as expected. The
ambiguity in convergence is a significant detraction. We found the larger
the projection the more converged the dominant eigenvalues. The number
of copies depended greatly on the choice of shift. A shift too close to a true
eigenvalue yielded excessive copies of that eigenvalue. The shift and inver-
sion in this case would make the eigenvalue extremely dominant and thus
any round off error would be swiftly amplified in the dominant eigenvector’s
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Table 1: cpu times and number of iterations for v1 and h = 6 at Rm =
1, 000 with shift (40, 0) at varying accuracies.

tol lsi. oi iram nsl
10−3 11.3 (22)(0) 28.7 (72) 4.5 (19) 10.7 (16)
10−4 12.1 (24)(0) 48.7 (138) 5.2 (23) 10.7 (16)
10−5 14.1 (30)(0) 55.3 (160) 5.3 (23) 11.1 (18)
10−6 17.9 (42)(0) 69.6 (207) 5.6 (27) 12.1 (20)
10−8 22.9 (55)(0) 97.8 (296) 6.2 (31) 13.2 (22)

Table 2: cpu times and number of iterations for v2 and h = 6 at Rm =
2, 500 with shift (0, 1100) at varying accuracies.

tol lsi. oi iram nsl
10−3 8.6 (15)(0) 24.3 (56) 4.5 (16) 9.9 (15)
10−4 12.3 (18)(0) 33.0 (79) 4.9 (19) 11.0 (16)
10−5 15.4 (18)(3) 47.6 (117) 5.3 (22) 11.0 (16)
10−6 16.5 (19)(3) 57.3 (143) 5.6 (23) 11.0 (16)
10−8 21.4 (26)(3) 76.1 (190) 6.1 (27) 12.5 (20)

direction when premultiplied by (M− µ)−1. In general a Lanczos projection
of size 3h yielded h eigenvalues which had converged with relative accuracy
of 10−6. Increasing Rm had little effect on the method’s performance. Storage
requirements were small, of O(h).

We used elapsed cpu time as the measure of computational speed. These
times could vary slightly, the ones given are representative. For the first four
tables we used truncation levels of N = 20 , J = 400 . A prediction of the
imaginary part of the leading modes’ growth rate was usually taken as the
shift in each case.

Tables 1 and 2 exhibit the calculated cpu times versus eigenvalue accu-
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Table 3: cpu times for v1 and h = 8 at varying Rm for tol = 10−6 .
Rm Shift lsi. oi iram nsl
0 (0,0) 30.9 (0) 27.8 6.7 22.4

100 (0,0) 34.9 (3) 148.3 8.1 15.6
1000 (0,400) 39.3 (4) xx 7.2 18.4

10,000 (0,4500) 30.3 (6) 119.8 6.0 18.1
50,000 (0,26000) 30.7 (6) 197.4 6.9 19.2
100,000 (0,52000) 27.1 (6) xx 7.0 19.5

Table 4: cpu times for v1 and various h at Rm = 5, 000 with shift (0, 600)
with tol = 10−6 .

h lsi. oi iram nsl
4 8.3 (0) 33.7 4.2 14.9
8 19.3 (2) 85.0 5.4 16.3
12 30.7 (2) 240.1 7.5 25.6
16 52.6 (3) xx 10.7 26.7
20 96.2 (4) xx 10.8 32.7
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Table 5: cpu times for v2 and h = 4 at Rm = 2, 500 with shift (0, 1100)
with tol = 10−6 for various truncations.

(N,J) matrix size s lsi. oi iram nsl
(20,400) 15980 200 14.3 (20) 28.8 (125) 5.6 (24) 8.9 (12)
(20,200) 7980 200 7.1 (21) 14.3 (124) 2.4 (21) 4.4 (12)
(10,400) 7980 100 3.4 (16) 9.3 (124) 1.3 (22) 2.2 (12)
(10,200) 3990 100 1.7 (17) 4.4 (125) 0.7 (24) 1.1 (12)

racy levels, tol is the relative accuracy used. The number in the brackets is
the number of required iterations for the simultaneous iterations, the num-
ber of restarts for the iram and the size of the smallest Lanczos projection
yielding eigenvalues of the requisite accuracy. In Table 2 the second brack-
eted number under Lop-sided iteration shows the optimal number of guard
vectors. In Table 3 we can compare the speed of the methods as Rm was
increased for a certain set of parameters. This can only give a rough indi-
cation due especially to the sensitivity of the simultaneous iterations to the
shift and specific eigenvalue distribution at a particular Rm. We have pre-
sented the optimal number of guard vectors for Lop-Sided iteration next to
its cpu times. Table 4 shows the dependence of speed on number of eigen-
values sought (h) for a certain set of parameters. Again we have displayed
the optimal number of guard vectors for Lop-sided iteration.

Table 5 confirms that for each method and each iteration (or restart) the
flop cost goes roughly like O(ns) for small enough h, and where n is the order
of the matrix and s is the total bandwidth.

5 Conclusions

It is clear for the problems we consider and number of eigenvalues sought
(< 30) that the iram surpasses all other methods in terms of speed. Unlike
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the simultaneous iteration methods it is relatively insensitive to the choice of
shift and eigenvalue distribution. Unlike the nsl it can produce unambiguous
results with a specified accuracy. The nsl method should only be used if
hundreds of eigenvalues are required and the simultaneous iterations should
not be employed.

For extremely large problems (n > 100, 000) direct solving may be too
expensive on account of the LU -decomposition. The value of iterative solvers
has yet to be explored in this context and should be an interesting area of
research. A method such as the Jacobi–Davidson method for subspaces [11],
which does not employ the inverse-shift technique, should also be examined.
We envisage that a key problem here will be the preconditioning because for
large Rm our matrices are not diagonally dominant.
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