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Abstract

We use direct numerical simulations to examine fully developed
turbulent open channel flow where the near wall region is unstably
stratified and the outer boundary layer is stably stratified. The simula-
tions are a model for flow in shallow turbid river channels with incident
solar radiation. The aim is to determine under what conditions and by
what mechanism the stably stratified layer is overturned. The flow is
attained by applying a radiative heat flux at the free surface of the open
channel. The absorption and transmission of the radiation follows the
Beer–Lambert law with a constant absorption coefficient. We examine
conditions where approximately 20% of the incident radiative heat
flux penetrates through to the wall, releasing heat at the wall as a
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heat flux. The problem is specified by our buoyancy parameter which
is analogous to the bulk Obukhov length scale. In the stable outer
boundary layer we observe that the flux Richardson number reaches
the limiting value, as was observed in the atmospheric boundary layer
under sheared convective conditions.
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1 Introduction

In river systems and in coastal seas, surface heating by incident solar radiation
can produce a region of stable density stratification within the water column.
The stratified layer opposes vertical fluid motion and suppresses turbulent
mixing, and therefore reduces the vertical exchange of nutrients and dissolved
oxygen from the surface to the river bed. This in itself is an unwanted envi-
ronmental outcome. In Australian inland river systems, stratified conditions
were also correlated with the onset of algal-blooms [1]. It is desirable to be
able to predict the onset of strongly stratified stable conditions so that flow
management strategies may be employed. This requires an understanding of
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how turbulence is generated and dissipated within the water column under
different environmental conditions.

The dynamics of turbulent stably stratified channel flow were considered in
many flow settings [2, 3, 4]. We consider open channel flow where the free
surface region is stably stratified and the near bed region is unstably stratified.
This flow occurs when a portion of solar radiation penetrates the water column
to the river bed. The heat released at the bed can rise as thermal plumes.
The potential energy released by the convective plumes may disrupt the
stable surface stratification. The flow is analogous to the sheared convective
atmospheric boundary layer and we show that many features of that flow
are recognisable in the present setting. In this study we use direct numerical
simulations to examine the energy transfers within the water column under
these conditions.

2 Problem Formulation

Our flow arrangement is illustrated in Figure 1.

An incident radiative heat flux Is penetrates the top surface and is absorbed
within the fluid domain following the Beer–Lambert law to produce a volu-
metric heat source

q(z) = Isαe
−(δ−z)α , (1)

where z is the vertical distance from the wall (or river bed), α is the absorption
coefficient and δ is the domain height (or channel depth). At z = 0 the fraction
of energy remaining at the wall is qw = Ise

−αδ . In our model, this heat is
released as a heat flux at the wall. The flow is periodic in the horizontal plane
and driven by a constant pressure gradient in the stream-wise x direction.
After the flow attains a statistically steady horizontally homogeneous state,
the energy input from the source terms is transported across the channel at a
constant rate.
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Figure 1: Schematic of flow. Domain is periodic in the stream-wise x direction
and the span-wise y direction. The lower z boundary is a no-slip wall. The
shaded area indicates the volumetric heat source.

The dimensional temperature field at time T is decomposed as

Φ(x, T) = Φ ′(x, T) + Φ̄(T) , (2)

where Φ ′ is the steady temperature field and the uniform increase in temper-
ature with time is

∂Φ̄/∂T = Īs/ρ0Cp , (3)

where ρ0 is the fluid density and Cp is the fluid specific heat. We obtain a non-
dimensional statistically steady temperature field φ and a non-dimensional
heat source qe(z) by normalising with ΦN = Is/ρ0Cpuτ and qN = Is/δ ,
respectively, to give,

φ =
Φ− Φ̄(T)

ΦN

, qe(z) =
q(z) − qN

qN
, (4)
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where uτ =
√
τw/ρ0 is the friction velocity and τw is the plane averaged

shear stress at the wall. With this normalisation we perform direct numerical
simulations (dns) of the Navier–Stokes equations.

We consider an incompressible fluid with the Oberbeck–Boussinesq approxi-
mation for buoyancy. The governing equations for the conservation of mass,
momentum and energy are written in non-dimensional form as

∇ · u = 0 , (5)
∂u

∂t
+∇ · (uu) = −∇p+ 1

Reτ
∇2u+ ex + λφez , (6)

∂φ

∂t
+∇ · (uφ) = 1

Reτ Pr
∇2φ+ qe , (7)

where ex and ez are the unit vectors in the x and z directions, respectively. The
Prandtl number Pr = ν/σ = 0.71 where σ is the scalar diffusivity of the fluid
and ν the fluid viscosity. The Reynolds number Reτ = uτδ/ν = 400 . The
velocity vector is u = (u, v,w) along the x, y and z directions, respectively,
and the velocity components are normalised by uτ. The non-dimensional
time t and pressure p are obtained using t = Tuτ/δ and p = P/ρ0u

2
τ where

T and P are the dimensional time and pressure, respectively. Length scales
are normalised by channel depth δ.

The buoyancy parameter λ = δ/L is the ratio of the channel depth δ to a bulk
Obukhov length scale L = u3τρ0Cp/Isgβ where β is the coefficient of thermal
expansion for the fluid. We vary λ over the range 0 to 20. We used a similar
approach in an earlier study [4], which provides further details. We obtain a
stability parameter for the convective flow at the wall λw = qwgβδ/u

3
τρCp ≡

λe−αδ . The strength of the convective heat flux released from the wall is
controlled via the absorption coefficient αδ. The governing parameters for
this problem are then Reτ, λ, αδ and Pr.

The boundary conditions for the bottom (z = 0) no-slip adiabatic wall and
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stress free adiabatic top boundary (z = 1) are

z = 0 : u = v = w = 0 ,
∂φ

∂z
= −Reτ Pr e−αδ , (8)

z = 1 :
∂u

∂z
=
∂v

∂z
= w = 0 ,

∂φ

∂z
= 0 . (9)

In the statistically steady flow considered here, the non-dimensional time
averaged temperature transport equation obtained from equation (7) is

d〈φ ′w ′〉
dz

=
1

Reτ Pr
d2φ

dz
+ qe . (10)

where 〈·〉 indicates averaging in the horizontal plane and in time. The primes
indicate fluctuations from the mean, so w ′ = 〈w〉−w . In the large Reynolds
number limit, 1/(Reτ Pr) → 0 , we integrate over the channel height with the
boundary condition 〈φ ′w ′〉 = 0 at z = 1 to obtain the turbulent heat flux
profile

− 〈φ ′w ′〉 = z− e(z−1)αδ . (11)

Integrating the buoyancy flux −λ〈φ ′w ′〉 over the channel height gives the
potential energy required to maintain statistically steady conditions,

−

∫ 1
0

λ〈φ ′w ′〉dz = λ

2
−
λ

αδ
(1− e−αδ) . (12)

In this study we examine the case where αδ = 1.5936 . With this arbitrary
choice the integral in (12) is zero so the net potential energy required for
steady conditions is approximately zero. In other words, the potential energy
released at the wall is the same magnitude as the work required to completely
mix down the stable surface layer. This is an arbitrary choice for αδ which
allows us to examine a flow that simultaneously contains both strongly stable
and strongly convective regions. Larger or smaller values of αδ result in more
or less stable flow, respectively.
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2.1 Direct numerical simulations

Equations (5)–(7) are solved using the fractional step finite volume solver
described by Armfield et al. [5]. The code uses a cell-centred co-located storage
arrangement for flow variables on a regular structured grid, with cell-face
velocities calculated using the Rhie–Chow momentum interpolation. The
spatial derivatives are discretised using second order central finite differences.
A second-order accurate Adams–Bashforth time advancement scheme is used
for the non-linear terms, and a Crank–Nicolson for the time advancement of the
diffusive terms. The pressure correction equation is solved using a stabilised
bi-conjugate gradient solver with an incomplete Cholesky factorisation pre-
conditioner. The momentum and temperature equations are solved using
a Jacobi solver. The computational domain extends in the stream-wise x,
span-wise y and wall normal directions with lengths Lx = 2π , Ly = π , Lz = 1 ,
respectively. The length scale of the smallest turbulent eddies in the flow is
the Kolmogorov length scale, which in viscous wall units is η+ = Reτ η/δ. Our
simulations found the Kolmogorov length scale to range from η+ = 1.5 to 5
for λ = 20 . The grid size in wall units is ∆x+ = Reτ∆x ' 5 with Nx = 512
nodes and ∆y+ ' 2.5 with Ny = 512 nodes. In the vertical axis, the grid is
stretched from ∆z+ = 0.55 at the wall to ∆z+ = 1 at z = 1.0 with Nz = 130
nodes. A Courant number limit of between 0.18− 0.2 is used to obtain the
time step size.

The simulation for the neutral λ = 0 flow was initialised with a turbulent mean
velocity profile and a large random perturbation. After an initial transient
phase, typically ∆t = 40 (non-dimensional time units δ/Tuτ) statistically
steady conditions were assumed. The flow was then evolved for a further
period, typically ∆t = 40 , and statistics were collected. Higher λ flow
conditions were successively initialised from these flow fields and computations
continued in the same manner. We present statistically steady flow statistics
only.
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3 Results

The first conclusion is that the flow structure is remarkably similar to that
seen in the sheared convective atmospheric boundary layer (scbl). The mean
temperature profile through the channel depth is shown in Figure 2(a) for
λ = 0 to 20. The flow is comprised of a unstable near wall region z < 0.2 , a
well mixed layer, z = 0.2 to 0.5 , and a stably stratified layer for z & 0.5 . The
root mean square (rms) temperature fluctuation φrms is a minimum in the
mixed layer, as shown in Figure 2(c). The heat flux is shown in Figure 2(b) for
λ = 4 to 80. For z . 0.36 the heat flux −〈φ ′w ′〉 < 0 indicating turbulence
production or convective flow, while for z & 0.36 the heat flux works against
turbulence and acts as a net sink of turbulence. These features are seen in
the developing scbl [6].

We are primarily interested in identifying the onset of the stable flow in
the near free surface region in terms of λ. In neutral conditions λ = 0 , the
velocity field and the temperature field are decoupled and the flow is turbulent
throughout the domain. As buoyancy strength is increased from zero both
the convective and stable regions exert influence on the flow structure. The
change in flow structure is visualised through the instantaneous temperature
contours given in Figure 3. At λ = 4 domain scale eddies penetrate to the
surface. At λ = 10 and 20 there is a distinct shear layer below the free surface
with overturns in the temperature field observable. At λ = 20 turbulence in
the free surface region is increasingly damped. The shear stress 〈u ′v ′〉 and the
stream-wise normal stress urms are damped over z > 0.8 compared with λ = 0
flow, as shown in Figure 4(a)–(b). The mean stream–wise velocity profiles
are flattened in the convective region of the flow, as shown in Figure 4(c).

The contribution to turbulence production by shear and buoyancy though
the domain height is seen through the balance terms in the turbulent kinetic
energy (tke) transport equations. In non-dimensional form the tke equations
are

ct +
d

dz
〈w ′p ′〉− 1

Reτ
d2k

dz2
= sp − ε− B , (13)
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Figure 2: Variations over
the vertical location z of
(a) the mean temperature
profile relative to the mean
temperature at the wall φ−
φ0 = φ − 〈φ〉z=0 ; (b) the
heat flux −〈φ ′w ′〉 ; and
(c) the rms temperature fluc-
tuation φrms . (a)
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Figure 3: Contours of temperature φ− φ0 in the xz plane (z is vertical and
x is horizontal) for (a) λ = 20 , (b) λ = 10 , and (c) λ = 4 where φ0 = 〈φ〉z=0 .

(a)

(b)

(c)

where the buoyancy flux B = −λ〈φ ′w ′〉 and the turbulence shear production
term sp = −〈u ′w ′〉d〈u〉/dz . Using Einstein notation for the velocity com-
ponents ui, the turbulent kinetic energy k = 0.5〈u ′

iu
′
i〉 and the turbulence

dissipation rate ε = 1/Reτ〈(∂u ′
i/∂xj)

2〉 . The transport of turbulent kinetic
energy by turbulent convection, ct = d〈w ′k〉/dz . When the production
and dissipation of turbulence is in balance, sp − ε − B = 0 . For z . 0.36 ,
B > 0 and the total turbulence production P = B+ sp . However, for B < 0
the buoyancy flux contributes to the dissipation of turbulence so the total
dissipation term D = −ε − B . The scaled turbulence transport terms are
plotted in Figure 5, scaled by the total local dissipation D.

Figure 4 shows a two layer structure which characterises the scbl. In the
convective region (z . 0.36), with increasing λ the transport term ct is
a significant source of turbulence, accounting for almost half of the local
turbulence dissipation of λ = 20 at z = 0.3 . At λ = 0 , the flow is in near
local energetic equilibrium with ct ' 0 . The stable region (z & 0.36) has the
opposite response to increasing λ. As the outer boundary layer becomes more
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Figure 4: Variations over
the vertical location z of
(a) the mean vertical shear
stress 〈u ′v ′〉 ; (b) the stream-
wise normal stress urms ; and
(c) the streamwise velocity
profile. (a)
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Figure 5: Scaled turbulence
kinetic energy budget terms
scaled by total turbulence
dissipation D = −ε − B :
(a) turbulence shear produc-
tion sp; (b) buoyancy B;
and (c) convective transport
term ct. (a)
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Figure 6: Gradient Richard-
son number with Ri = 0.25
indicated.
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stable, the local shear production term becomes an increasing proportion of
the total turbulent energy dissipation with local equilibrium achieved over
approximately 0.5 < z < 0.7 . At λ = 0 the transport term ct is a significant
source of turbulence, accounting for more than half of the local turbulence
dissipation.

The scaled buoyancy term B/D is also known as the flux Richardson num-
ber Rf. In stably stratified shear flows limit values of Rf = 0.25 were widely
observed [3]. In the present results, Figure 5(b) shows that for λ > 10

the flux Richardson number approaches the limit of Rf = B/D = 0.25 over
0.5 . z . 0.8 . Similar limits are observed in the gradient Richardson num-
ber, Ri = N2/S2 where N2 = −λd〈φ〉/dz and S = d〈u〉/dz . In Figure 6
Ri = 0.25 in the stable shear layer. In the scbl both limits of these values
were observed [6].
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4 Conclusions

The transition from neutral to strongly stratified flow in a thermally stratified
open channel flow was examined using direct numerical simulations. The flow
has both a stably stratified surface layer and a unstably stratified near wall
region. The flow attained is shown to have similar character to the shear
convective atmospheric boundary layer.

In the stable thermocline for λ = 20 , both the flux Richardson number and
gradient Richardson number approach limit values Rf = 0.25 and Ri = 0.25 ,
respectively, similar to limits seen in other stably stratified shear flows.
The turbulence transport term is small so the flow is near local energetic
equilibrium over most of the stable shear layer 0.5 < z < 0.8 , which is
expected to aid turbulence parameterisations. At λ = 20 and αδ = 1.5936
turbulence is strongly damped near the free surface.

The most interesting feature of the flow is that buoyancy contributes sig-
nificantly to turbulence production in the near wall region but it is unclear
how the convective flow contributes to the shear that develops in the outer
boundary layer, if at all. This will be the focus of future work.
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