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Abstract

We present an efficient framework for simulating the average wave
scattering properties of two dimensional randomly shaped particles
with statistical properties similar to model aerosols particles that are
important in atmospheric science applications. Our framework is based
on an efficient high order discretisation of the spatial dimensions and
parallel implementations for the large number of stochastic dimen-
sions. We demonstrate our framework by simulating the mean (and
higher order moments) of the far field of the model particles. We use
tens of thousands of Monte Carlo, quasi-Monte Carlo and sparse grid
generalised polynomial chaos realisations of the random particle model.
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1 Introduction

Simulation of the average scattering properties of randomly shaped particles
is important in many applications. One example concerns the light scattering
properties of ice crystals and atmospheric aerosol particles, which are impor-
tant in climate science because of their impact on radiative transfer in the
atmosphere [1, 8, 10, 16].

We focus on two dimensional simulations of the average far field of particles
with random shapes and properties similar to those used in atmospheric
science [10, 16]. Tackling two dimensional models is an important stepping
stone towards developing efficient hybrid determinisitic-stochastic algorithms
for solving the full three dimensional model for feldspar aerosol particles [1, 16],
which will be the subject of our future work.

The main quantity of interest in scattering models is the stochastic complex
valued far field u∞, defined as a function of the observed direction and the
stochastic variable. For example, in climate science, key data such as the
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scattering cross section of particles and the extinction coefficients are derived
from the far field [15, p. 12].

Following the work of Nousiainen and McFarquhar [10] and Veihelmann
et al. [16] on ice crystals and dust particles, Section 2 describes a stochastic
model for randomly shaped particles D(ω), where ω is an element of the
set of outcomes Ω in a probability space (Ω,F,P), and F is a σ-algebra
of Ω, with P the associated probability measure. We denote by u∞(·;ω)
the far field induced by the interaction of an incident plane wave with the
particle D(ω).

Our main focus is to compute the expected value of the intensity of the far
field

E[|u∞(x̂; ·)|2] =
∫
Ω

|u∞(x̂;ω)|2 dP(ω) , x̂ ∈ ∂B , (1)

where ∂B is the unit circle comprising all observation direction vectors x̂. The
direction d̂ in which the incident plane wave propagates is considered fixed.
Section 3 describes a high-order numerical method for the stochastic wave
propagation model. The numerical solution exactly satisfies the radiation
condition.

Lamberg et al. [9], Nousiainen and McFarquhar [10] and Veihelmann et al. [16]
investigated randomly shaped scattering particles with Ω = RS and Gaussian
probability measure where S is the stochastic model order and is typically
a few tens in the two dimensional case (and a few hundreds in the three
dimensional case). In this work we consider the interesting and practical case
of randomly shaped particles with bounded Ω ⊂ RS and probability measure
associated with the uniform distribution.

In both the Gaussian and uniform distribution cases, the high dimension
of the integral in (1) requires efficient (finite sum) approximations with a
trade-off between the accuracy of evaluating the integral and a practical
number of cubature/realization points. For each cubature point, the full
scattering model needs to be solved to compute the associated far field.
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In this work we approximate the integral (1) using state of the art Monte Carlo
(mc), quasi-Monte Carlo (qmc) and sparse-grid generalised polynomial chaos
(sg-gpc) techniques. Le Maître and Kino [13] and recent reviews [5, 12, and
extensive references] provided details of these three stochastic approximation
methods. All three approaches lead to tens of thousands of independent
scattering realizations with fixed scatterers. We simulate each of these
realizations using an efficient high-order Nyström scheme [3] with high-order
quadrature to evaluate weakly-singular integrals.

The modified Nyström scheme is equivalent to a pseudo-spectral algorithm [6]
and hence, unlike standard Nyström techniques, leads to high-order conver-
gence. For each realization of the random model, the number of degrees of
freedom for simulating the far field depends on the roughness of the scatter-
ing particle. The Nyström scheme leads to relatively smaller linear systems
than low-order boundary/finite element methods (that do not exploit the
special structure of the stochastic particles considered in this article). Thus
the algorithms employed here include a hybrid of low/high-order stochastic
sampling and high-order spatial discretization. The independence of the large
number of spatial scattering simulations allows further acceleration by taking
advantage of parallel computing.

Our work is closely related to several interesting articles. In particular, Vei-
helmann et al. [16] used the low order discrete dipole method for scattering
simulations with 100 mc samples to approximate the scattering properties
of model feldspar particles, and Nousiainen and McFarquhar [10] used a
similar random particle model for atmospheric ice crystals and the ray op-
tics approximation for particles that are large compared with the incident
wavelength.

Using our efficient computational framework, Section 4 presents results ob-
tained using tens of thousands of realizations to compare the industrial
standard mc, qmc, and sg-gpc high-dimensional stochastic integral approx-
imations for application to scattering by stochastic boundaries. We are
not aware of any previous numerical results that combine such large scale
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stochastic sampling with efficient high-order stochastic boundary scattering
simulations for this important class of model particles. Previous approaches
involve low-order scattering simulations (based on perturbation methods,
the method of moments, and the finite element method) applied in combi-
nation with mc, qmc, and high order integration methods (including gpc)
for scatterers whose randomness consists of random deformations of a fixed
shape [2, 11, 14, 17].

2 Model stochastic particles and properties

It is standard in scattering theory to parametrise the boundary of two dimen-
sional particles using polar coordinates [3]. We parametrise the stochastic
boundary ∂D(ω) of the model particle D(ω) using qω : [0, 2π) → ∂D(ω) ,
where

qω(θ) = rω(θ)(cos θ, sin θ) , θ ∈ [0, 2π) . (2)

We follow the approach of Nousiainen and McFarquhar [10] and Veihelmann
et al. [16] to imbue the stochastic radius function with certain statistical
properties. These properties were chosen so that the resulting stochastic
shapes model various kinds of particles analysed in atmospheric science using
instruments such as a cloud particle imager [1, 10, 16].

The stochastic radius function is

rω(θ) =
1√
1+ σ2

exp[sω(θ)] , θ ∈ [0, 2π) , (3)

where σ2 is a physical parameter of the model, N is a truncation parameter,
and the log-radius function is represented by a stochastic truncated Fourier
(or Karhunen–Loéve) expansion:

sω(θ) =

N∑
k=2

ak coskθ+
N∑
k=2

bk sin kθ . (4)
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The coefficients in (4) are independent (uniform or Gaussian) random variables
with zero mean, and the variance of ak and bk is δ2k with

δk = αk
−m , for k = 2, . . . ,N . (5)

Here m is a parameter that controls the roughness of the particle boundary,
and α is a normalisation parameter chosen so that

N∑
k=2

δ2k = δ
2 , δ2 = log(1+ σ2) . (6)

Thus the dimension of the associated probability space Ω is S = 2N− 2 and
we write ω = (a2, . . . ,aN,b2, . . . ,bN) .

The random particles in the model are specified by the two parameters
m and σ (and the truncation parameter N), and by the distribution of the
random variables associated with the coefficients. For the simulations we
choose m = 5/2 and σ = 1/5 so that in the Gaussian case our random
particles model feldspar dust [10, 16]. Figures 1 and 2 visualise samples of
the uniform random particle model with N = 5 and N = 10 . The particles
are blobby for small N and become rougher with increasing N.

Next we outline some statistical properties of the log-radius and radius.
We are not aware of any results giving these statistical properties when
the coefficients ak and bk in (4) are uniform random variables. Equivalent
properties for the Gaussian case are given by Lamberg et al. [9].

First we consider the covariance of the log-radius, which is independent of the
distribution type. Using the independence of the zero mean random variables
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Figure 1: Samples of the uniform random particle model with N = 5 and
hence there are S = 8 random variables. The particles are blobby for small N
and become rougher with increasing N.

in (4),

Cov[sω(θ1), sω(θ2)] = E[sω(θ1)sω(θ2)]

= E

[(
N∑
j=2

aj cos jθ1 +
N∑
j=2

bj sin jθ1

)

×

(
N∑
k=2

ak coskθ2 +
N∑
k=2

bk sin kθ2

)]

=

N∑
k=2

E[a2k] coskθ1 coskθ2 +
N∑
k=2

E[b2k] sin kθ1 sinkθ2 .



2 Model stochastic particles and properties C319

Figure 2: Samples of the uniform random particle model with N = 10 and
hence there are S = 18 random variables. The particles are blobby for small N
and become rougher with increasing N.

Consequently, using the double angle formula for cosine,

Cov[sω(θ1), sω(θ2)] =
N∑
k=2

δ2k cosk(θ1 − θ2) . (7)

Thus the variance of the log-radius is δ2.

Uniform random particle case: When the coefficients ak and bk in (4)
are uniform random variables, the covariance has no simple representation.
However, Appendix A shows that the mean of the radius is approximately
one, and derives the approximation

Cov[rω(θ1), rω(θ2)] ≈ exp {Cov[sω(θ1), sω(θ2)]}− 1 . (8)
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These approximations are valid for small δ2, . . . , δN and it follows that for
sufficiently small σ2 the variance of the radius is approximately exp(δ2)− 1 =
σ2 .

Gaussian random particle case: When the coefficients ak and bk in (4)
are Gaussian random variables, the statistical properties of the radius are
known [9]. In particular, the radius has unit mean and covariance

Cov[rω(θ1), rω(θ2)] = exp{Cov[sω(θ1), sω(θ2)]}− 1 . (9)

Thus the variance of the radius is exp(δ2) − 1 = σ2 and the parameter σ2 has
physical significance. Lamberg et al. [9, §2] give an equivalent covariance (9),
after taking into account the normalized radius in (3).

3 Scattering model and numerical method

We assume that the model stochastic particle D(ω) is illuminated by a
time-harmonic incident plane wave with wavelength λ. The incident plane
wave is represented by its complex valued spatial component

uinc(x) = eiκx·d̂ ,

where the fixed unit vector d̂ represents the direction of propagation of the
incident wave and κ = 2π/λ is the wavenumber. The interaction of the
incident wave with the particle D(ω) induces a complex valued stochastic
scattered field u(·;ω) satisfying the Helmholtz equation

∆u(x;ω) + κ2u(x;ω) = 0 , x ∈ R2 \D(ω) , (10)

and the Sommerfeld radiation condition [3, eq. (3.85)]

lim
|x|→∞

√
|x|

(
∂u

∂x
(x;ω) − iκu(x;ω)

)
= 0, (11)
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uniformly with respect to the direction x/|x| ∈ ∂B . It is well known that
the Maxwell model for light scattering in the two dimensional case, with
appropriate polarization, reduces to solving the Helmholtz equation [3].

To simplify the discussion, we consider only the stochastic sound-soft parti-
cle D(ω) and hence on the boundary ∂D(ω) of D(ω) we apply the vanishing
total field boundary condition

u(x;ω) + uinc(x) = 0 , x ∈ ∂D(ω) . (12)

The techniques presented in this work are readily modified for other boundary
conditions (for example, impedance and transmission boundary conditions).

A consequence of the radiation condition (11) is that [3, eq. (3.86)]

u(x;ω) =
eiκ|x|√
|x|

[
u∞(x̂;ω) +O

(
1

|x|

)]
, (13)

for x̂ = x/|x| as |x| → ∞ . The complex valued stochastic far field u∞ defined
on the unit circle ∂B and its first stochastic moment given by (1) are typically
the quantities of interest in applications.

Our approach for approximating the expected value integral (1) has two parts.
The first part is a cubature rule for the high dimensional integral (1) that
requires evaluation of the far field for each cubature point ω1, . . . ,ωM ∈
Ω . The second part is to approximate the far field of the deterministic
particle D(ωj) for each of the cubature points j = 1, . . . ,M . Since a far field
computation is required for each of the M cubature points, it is crucial that
this is performed efficiently.

For a fixed particle D(ωj) we use a surface integral representation of the
scattered field

u(x;ω) =

∫
∂D(ωj)

[
∂G

∂n(y)
(x,y) − iκG(x,y)

]
φ(y)ds(y) , (14)

where
G(x,y) =

i

4
H

(1)
0 (κ|x− y|)
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is the free space Green’s function for the two dimensional Helmholtz equation
and H(1)

0 is the zero order Hankel function of the first kind. The unknown
boundary potential φ in (14) satisfies the second kind integral equation

φ(x) + 2

∫
∂D(ωj)

[
∂G

∂n(y)
(x,y) − iκG(x,y)

]
φ(y)ds(y) = −2uinc(x) , (15)

for x ∈ ∂D(ωj) . The scattered field (14) exactly satisfies the Helmholtz
equation (10) and the radiation condition (11) [3].

We numerically solve the second kind integral equation (15) using the efficient
high-order Nyström scheme [3, §3.5] using 2n quadrature points on ∂D(ωj)
and a high-order quadrature rule for the weakly-singular integral in (15). The
resulting approximate potential is φn. For smooth scatterers, such as those
in our random particle model, this scheme exhibits high-order convergence
of φn to φ (in the maximum norm) with order constant that depends mainly
on the roughness of the stochastic boundary. Hence the high-order method
requires only to resolve the roughness in the stochastic boundary, leading to
relatively small linear systems that can be solved quickly using a direct solver.
This is the key to the efficiency of our hybrid numerical method for the model
problem described, with large stochastic dimension and unbounded exterior
spatial region.

Using φn and the ansatz (14) we obtain a boundary integral representation
for the approximate far field [3, eq. (3.87)]

u∞
n (x̂;ω) =

eiπ/4√
8πκ

∫
∂D(ωj)

[
∂e−iκx̂·y

∂n(y)
− iκe−iκx̂·y

]
φn(y)ds(y) . (16)

To approximate (1) for fixed x̂ ∈ ∂B we use the cubature rule

EM[|u∞
n (x̂;ω)|2] =

M∑
j=1

νj|u
∞
n (x̂;ωj)|

2 , (17)

with cubature points ω1, . . . ,ωM and weights ν1, . . . ,νM. The numerical far
field simulations for the cubature points in (17) are independent and so in
our implementation we efficiently perform these in parallel.
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In our numerical experiments we use three cubature sampling rules.

mc: Low-order rule with equal weights νj = 1/M for j = 1, . . . ,M and
cubature points taken from a random sample of ω.

qmc: High-order rules based on the Sobol points using equal weights νj =
1/M for j = 1, . . . ,M and low discrepancy quadrature points [4] with
interlace factor d = 1, . . . , 4 .

sg-gpc: High-order rule using a Smölyak sparse-grid [7] with Gauss–Hermite
or Gauss–Legendre quadrature in the Gaussian and uniform cases,
respectively.

Remark 1. The generalised polynomial chaos approach computes a high
order orthogonal polynomial approximation to |u∞

n (x̂;ω)|2 . We focus on
the expected value, which is obtained from the zero order coefficient and is
mathematically equivalent to the cubature rule (17). Le Maître and Kino [13]
provided full details.
Remark 2. The (full-grid) gpc is practical if the number of random variables S
is fewer than five. The sparse-grid gpc provides a framework for the case
S > 5 at the expense of reduced accuracy. For larger S, say S > 15 , the mc
and qmc realizations are appropriate because the rate of convergence of the
mc/qmc is expected to be independent of (or mildly dependent on) S. Proving
the mc, qmc, and sg-gpc theoretical rates of convergence and quantification
of the associated order constants for the wave propagation model is an open
problem. The proofs will depend crucially on the regularity of the quantity of
interest in appropriate norms. These proofs will be part of our future work.

4 Numerical experiments

In this section we demonstrate the hybrid numerical approach for the stochas-
tic wave scattering model (10)–(12) with stochastic boundaries obtained using
parameters N = 5, 10 (corresponding to the stochastic dimension S = 8, 18)
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by simulating the average far field induced by the model random particles
(see Figures 1 and 2) with diameters one and four times the incident wave-
length. It is useful to investigate the behavior of the hybrid algorithms as the
incident frequency increases, especially to understand the low-order mc and
high-order qmc approximations of the stochastic integrals for large stochastic
dimensional wave propagation models.

For each fixed value of the stochastic parameter ω, the Nyström scheme
parameter n required to attain a given accuracy in the far field u∞

n depends
(in a complicated way) on the incident wavenumber k and on the shape of the
scatterer. In the case of our stochastic particle model, the scatterer shape is
random, and care must be taken to ensure that the parameter n is sufficiently
large to attain the desired accuracy for all samples of the random particle
model.

To investigate appropriate values of n, for each of the problems considered
in this section we measured the error for 1000 mc samples of the random
particle. The true value of the far field is not known, so we use the standard
approach of approximating the error using a reference solution computed with
more degrees of freedom. Since the method is spectrally accurate, a moderate
increase in n is sufficient to obtain a comparison solution. In particular, for a
fixed realisation ω of the random model and a test value of n, our relative
error estimate for u∞

n (·;ω) is

ρn(ω) =
‖u∞

n (·;ω) − u∞
n+5(·;ω)‖∞

‖u∞
n+5(·;ω)‖∞ .

We approximate the maximum norm on ∂B in ρn by taking the maximum
error at 1000 observation angles. The histograms in Figures 3 and 4 show the
normalised frequency against the logarithm (base 10) of the error for 1000 mc
samples of the uniform random particle model with S = 8 and S = 18 . These
histograms establish that (with very high probability) we obtain at least six
digits accuracy in our simulation of the associated exterior scattering model
for each stochastic boundary realization.
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Figure 3: Histograms showing the normalised frequency against the logarithm
(base 10) of the error in the computed far field u∞

n (·;ω) for 1000 samples
of ω for the random particle model with S = 8 for (top) average diameter λ
and n = 35 ; (bottom) average diameter 4λ and n = 80 .
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Figure 4: Histograms showing the normalised frequency against the logarithm
(base 10) of the error in the computed far field u∞

n (·;ω) for 1000 samples
of ω for the random particle model with S = 18 for (top) average diameter λ
and n = 35 ; (bottom) average diameter 4λ and n = 80 .
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Table 1: Parallel cpu time required for M = 65 536 mc simulations for the
uniform random particle model with S = 18 random variables and Nyström
parameter n on two 2.5GHz ten-core Intel Xeon processors for particles with
mean diameter one and four times the incident wavelength λ.

diameter n cpu time (min)
λ 55 33.7
4λ 110 128.3

The principal part of the cpu time required by our algorithm is that required
to perform the M independent scattering simulations and is proportional
to M. Hence the cpu time is essentially independent of which cubature rule
is used. Table 1 demonstrates the efficiency of our parallel algorithm by
tabulating the parallel cpu time required to perform M = 216 = 65 536 mc
simulations for the uniform random particle model with S = 18 .

For the uniform particle model with N = 5 the stochastic dimension S = 8 is
sufficiently small that we are able to use the sg-gpc scheme. Table 2 gives
the relative error in the expected value of the far field computed using the
sg-gpc scheme for the uniform random particle model for particles of mean
diameter equal to the incident wavelength. Figure 5 plots the relative error in
the expected value of the far field computed using the mc and qmc schemes
for the uniform random particle model with S = 8 for particles of mean
diameter equal to one incident wavelength. For this particle we compare
all three cubature models and Figure 6 again plots the relative error in the
expected value of the far field computed using the mc and qmc (with interlace
parameter d = 4) and sg-gpc schemes. The error plotted is measured in
the infinity norm, approximated at 1000 equally spaced observation angles.
Because the exact value of the mean is not known, for the error calculations
we took as our reference solution the mean far field computed using the qmc
scheme with M = 216 = 65 536 points and interlace parameter d = 4 .

Figures 7 and 8 plot the relative error in the expected value of the far field,
computed using the mc and qmc schemes for the uniform random particle
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Table 2: Relative error in the computed expected value of the far field
for the sparse grid generalised polynomial chaos scheme with M points for
the uniform random particle model with S = 8 . The mean diameter of the
particles equals the incident wavelength. The Nyström parameter n = 35 .

gpc degree M rel. error
2 145 2.8× 10−3
4 3 905 5.1× 10−4
6 51 713 1.8× 10−4

Figure 5: Relative error in the computed expected value of the far field
plotted against log2M for mc and qmc schemes withM points for the uniform
random particle model with S = 8 random variables. The mean diameter
of the particles equals one incident wavelength. The Nyström parameter
n = 35 .
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Figure 6: Relative error in the computed expected value of the far field plotted
against log2M for mc, qmc and sparse grid gpc schemes with M points
for the uniform random particle model with S = 8 random variables. The
mean diameter of the particles equals one incident wavelength. The Nyström
parameter n = 35 .

model with S = 18 and for particles of mean diameter one and four times
the incident wavelength. Again, we took as our reference solution the mean
far field computed using the qmc scheme with M = 216 = 65 536 points and
interlace parameter d = 4 .

Finally, Figure 9 visualises the mean and standard deviation of |u∞
n (·;ω)|2 by

plotting the cross section of the mean far field for the uniform random particle
model with S = 18 . The mean and standard deviation are obtained using the
qmc method with M = 216 = 65 536 points and interlace parameter d = 4 .
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Figure 7: Relative error in the computed expected value of the far field
plotted against log2M for mc and qmc schemes withM points for the uniform
random particle model with S = 18 random variables. The mean diameter
of the particles equals one incident wavelength. The Nyström parameter
n = 55 .

The cross section, in decibels, is obtained from the far field by applying

ρdB(u) = 10 log10 2π|u|
2 .
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Figure 8: Relative error in the computed expected value of the far field
plotted against log2M for mc and qmc schemes withM points for the uniform
random particle model with S = 18 random variables. The mean diameter
of the particles equals four incident wavelength. The Nyström parameter
n = 110 .

5 Conclusions

The development of advanced uncertainty quantification algorithms for scat-
tering by randomly shaped particles is at an early stage. There are several
unresolved issues, including theoretical results on the smoothness of the quan-
tities of interest as functions of the random variables in the stochastic model;
sharp frequency dependent convergence estimates for qmc schemes for high
dimension problems; and computational issues related to the large stochastic
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Figure 9: Mean far field (in decibels) obtained using the qmc method
with M = 65 536 simulations and interlace parameter d = 4 for the uniform
random particle model with S = 18 random variables and incident wave
coming from the direction 0◦. The shaded region indicates the mean plus
and minus one standard deviation. The mean diameter of the particles is
(top) one incident wavelength; (bottom) four times the incident wavelength.
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dimension of the problem. This work represents a substantial step forward
for some of these issues. In particular, our efficient computational framework
facilitates large scale simulations that are necessary for the investigation of
smoothness and convergence. This is a key stepping stone towards simulating
the full three dimensional model, which has important applications.

The numerical results in this work suggest that for low frequency problems
the qmc method converges at a faster rate than the mc method, but that
the convergence rate of the qmc method decreases as the frequency increases.
Our experiments suggest that the standard deviation of the far field also
increases as the frequency increases. It is likely that these two phenomena
are connected. This illustrates the extreme challenge posed by uncertainty
quantification in wave scattering applications for high incident frequencies.
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A Proof of approximation

In this appendix we derive the approximation (8) in Section 2 for the covariance
of the radius

Cov[rω(θ1), rω(θ2)] = E [rω(θ1)rω(θ2)] − E [rω(θ1)]E [rω(θ2)] . (18)

The approximation is based on the variance of log-uniform random variables.
In particular, for uniform random variables X ∼ U(−

√
3σ,
√
3σ) with zero
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mean and variance σ2, it is straightforward to derive the relation

E[eX] =
e
√
3σ − e−

√
3σ

2
√
3σ

=
sinh
√
3σ

2
√
3σ

. (19)

This is a special case of the moment generating function of X. Taylor’s
expansion about the origin gives

sinh
√
3σ

2
√
3σ

= eσ
2/2 + O(σ4) . (20)

We begin by approximating the first term on the right hand side of (18).
Using (3) we write the radius rω in terms of the log-radius sω,

E [rω(θ1)rω(θ2)] =
1

1+ σ2
E [exp(sω(θ1)) exp(sω(θ2))]

=
1

1+ σ2
E [exp(sω(θ1) + sω(θ2))] . (21)

Using the Fourier expansion of the log-radius (4), and collecting like terms
we obtain

sω(θ1) + sω(θ2) =

N∑
k=2

ak(coskθ1 + coskθ2) +
N∑
k=2

bk(sinkθ1 + sin kθ2) .

The random variables a2, . . . ,aN and b2, . . . ,bN are independent of each other
and hence the expected value in (21) decouples into factors,

E [exp(sω(θ1) + sω(θ2))] =

(
N∏
k=2

E [exp(ak(coskθ1 + coskθ2))]

)

×

(
N∏
k=2

E [exp(bk(sinkθ1 + sin kθ2))]

)
.
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Since ak(coskθ1 + coskθ2) is a random variable with variance δ2k(coskθ1 +
coskθ2)2 , the expected value for log-uniform random variables (19) and the
approximation (20) give

E [exp(sω(θ1) + sω(θ2))] ≈

(
N∏
k=2

exp
[
δ2k
2
(coskθ1 + coskθ2)2

])

×

(
N∏
k=2

exp
[
δ2k
2
(sin kθ1 + sinkθ2)2

])

=

N∏
k=2

exp
[
δ2k(1+ coskθ1 coskθ2 + sinkθ1 sinkθ2)

]
=

N∏
k=2

exp
[
δ2k(1+ cosk(θ1 − θ2))

]
=

[
N∏
k=2

exp(δ2k)

]
N∏
k=2

exp[δ2k cosk(θ1 − θ2)]. (22)

From (6), and using the normalisation of the variances,
N∏
k=2

exp(δ2k) = exp(δ2) = 1+ σ2 . (23)

Substituting into (22) and using the covariance of the log-radius (7), we obtain

E [exp(sω(θ1) + sω(θ2))] ≈ (1+ σ2) exp[Cov(sω(θ1), sω(θ2))] .

Finally, substituting into (21) gives

E [rω(θ1)rω(θ2)] ≈ exp[Cov(sω(θ1), sω(θ2))] .

Now we approximate the second term on the right hand side of (18). Again
using (3) we write the radius rω in terms of the log-radius sω,

E [rω(θ)] =
1√
1+ σ2

E [exp(sω(θ))] . (24)
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Using the Fourier expansion of the log-radius (4),

sω(θ) =

N∑
k=2

ak coskθ+
N∑
k=2

bk sin kθ ,

and the independence of the random variables a2, . . . ,aN and b2, . . . ,bN, the
expected value on the right hand side of (24) decouples into factors:

E [exp(sω(θ))] =

(
N∏
k=2

E [exp(ak coskθ)]

)(
N∏
k=2

E [exp(bk sin kθ)]

)
.

Using the expected value for log-uniform random variables (19) and the
approximation (20) in a similar way to above gives

E [exp(sω(θ))] ≈

[
N∏
k=2

exp
(
δ2k
2
cos2 kθ

)][ N∏
k=2

exp
(
δ2k
2
sin2 kθ

)]

=

N∏
k=2

exp
(
δ2k
2

)
=
√
1+ σ2 ,

where in the last line we again use (23). Finally, substituting into (24) gives

E [rω(θ)] ≈ 1 .

The approximation (8) now follows immediately.
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