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Abstract

We numerically solving semilinear elliptic problems with the method
of upper and lower solutions. Inexact monotone iterative methods are
constructed, where monotone linear systems are solved by the Jacobi
or Gauss–Seidel methods only approximately. The inexact monotone
methods combine the quadratic monotone iterative method at outer
iterations and the Jacobi or Gauss–Seidel methods at inner iterations,
and possess global monotone convergence. Results of numerical experi-
ments are presented.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/9317
gives this article, c© Austral. Mathematical Soc. 2015. Published October 27, 2015, as
part of the Proceedings of the 17th Biennial Computational Techniques and Applications
Conference. issn 1446-8735. (Print two pages per sheet of paper.) Copies of this article
must not be made otherwise available on the internet; instead link directly to this url for
this article.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/9317


Contents C69

Contents
1 Introduction C69

2 The monotone iterative methods C70
2.1 The monotone iterative method . . . . . . . . . . . . . . . C71
2.2 The monotone inexact methods . . . . . . . . . . . . . . . C72

3 Numerical experiments C77

References C80

1 Introduction

We consider the semilinear elliptic problem

−

κ∑
ν=1

(Dνuxν)xν +

κ∑
ν=1

vν(x)uxν + f(x,u) = 0 , x ∈ ω , (1)

u(x) = g(x) , x ∈ ∂ω , uxν = ∂u/∂xν ,

where ω is a connected bounded domain in Rκ for κ = 1, 2, . . . with bound-
ary ∂ω, and Dν(x) > 0 with x ∈ ω = ω ∪ ∂ω for ν = 1, . . . κ . We assume
that for some constant c∗ > 0 ,

fu > c∗ , (x,u) ∈ ω× (−∞,∞) , fu ≡ ∂f/∂u . (2)

Section 2 introduces a nonlinear difference scheme for the numerical solution
of (1).

These types of elliptic problems arise in various fields of applied sciences [8].
In the study of numerical solutions of nonlinear elliptic problems, the cor-
responding discrete problem is usually formulated as a system of nonlinear
algebraic equations [7]. A fruitful method for solving the nonlinear differ-
ence scheme is the method of upper and lower solutions and its associated
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monotone iterations. Boglaev [2] and Pao [9] gave some accelerated monotone
iterative methods with a quadratic rate for solving discrete elliptic boundary
value problems. However, solving a monotone linear system at each iterative
step can be expensive if the number of unknowns is large [2, 9]. It seems
reasonable to solve the monotone linear system at each iterative step (outer
iteration) only approximately with a fixed number of iterative steps (inner
iterations). One advantage of using an iterative method to solve monotone
linear systems approximately is that the systems do not need to be solved
too accurately in the early stages of the monotone iterative method. Inner
iterations should keep global monotonicity of outer iterations. We call this
combined monotone method an inexact monotone method (cf. inexact New-
ton methods [5]). Inexact monotone methods offer a trade-off between the
accuracy with which the monotone linear systems (outer iterations) are solved
and the amount of work per iteration (inner iterations).

Boglaev [4] constructed and investigated inexact monotone methods for solving
semilinear parabolic problems. The aim of this article is to construct inexact
monotone methods for solving semilinear elliptic problems, where the outer
iterations are based on the monotone method discussed by Boglaev [2] and the
inner iterations are based on the Jacobi and Gauss–Seidel iterative methods.
The numerical results show that the inexact monotone methods converge with
a fast linear rate of convergence (superlinear rate). The inexact monotone
iterative methods are presented in Section 3.

2 The monotone iterative methods

On ω, we introduce a connected mesh Ω. For a mesh function U(p), p ∈ Ω ,
consider a nonlinear difference scheme of the form

LU(p) + f(p,U) = 0 , p ∈ Ω , U(p) = g(p) , p ∈ ∂Ω , (3)

LU(p) = d(p)U(p) −
∑

p
′∈σ ′(p)

a(p,p
′
)U(p

′
) ,
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where σ ′(p) = σ(p) \ {p} , σ(p) is a stencil of the scheme at an interior
mesh point p ∈ Ω and ∂Ω is the boundary of Ω. We make the following
assumptions on the coefficients of the difference operator L:

d(p) > 0 , a(p,p
′
) > 0 , d(p) −

∑
p
′∈σ ′(p)

a(p,p
′
) > 0 , p ∈ Ω . (4)

Remark 1. These assumptions are satisfied by the standard difference approx-
imation of the differential operator in (1).

We now formulate the maximum principle for the difference operator L

from (3).

Lemma 2. Let the coefficients of the difference operator L from (3) satisfy (4)
and let the mesh Ω be connected. If a mesh function W(p) satisfies the
conditions

(L+ c)W(p) > 0 (6 0) , p ∈ Ω , W(p) > 0 (6 0) , p ∈ ∂Ω ,

where c(p) > 0 , p ∈ Ω , then W(p) > 0 (6 0) , p ∈ Ω .

Abraham and Plemmons [1] proved this lemma.

2.1 The monotone iterative method

We say that U1(p) is an upper solution if it satisfies

R(p,U1) ≡ LU1(p) + f(p,U1) > 0 , p ∈ Ω , U1(p) > g(p) , p ∈ ∂Ω ,

where R(p,U1) is the residual of the difference scheme (3) on U1(p). Similarly,
U−1(p) is a lower solution if it satisfies the reversed inequalities. Initial upper
and lower solutions U(0)

α (p) (α = 1 and α = −1 correspond to the upper and
lower cases, respectively) are calculated by solving the linear problems

(L+ c∗)Z
(0)
α (p) = α|R(p,S)| , p ∈ Ω , Z(0)

α (p) = 0 , p ∈ ∂Ω , (5)

Z(0)
α (p) = U(0)

α (p) − S(p) , R(p,S) ≡ LS(p) + f(p,S) , p ∈ Ω ,
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where c∗ is from (2), and S(p) is defined on Ω and satisfies the boundary
condition S(p) = g(p) on ∂Ω. For n > 1 we calculate upper and lower
solutions by using the recurrence formulae

[L+ c(n−1)(p)]Z(n)
α (p) = −R(p,U(n−1)

α ) , p ∈ Ω , (6)

Z(n)
α (p) = U(n)

α (p) −U(n−1)
α (p) , p ∈ Ω , Z(n)

α (p) = 0 , p ∈ ∂Ω ,

R(p,U(n−1)
α ) ≡ LU(n−1)

α (p) + f(p,U(n−1)
α ) .

The mesh function c(n−1) is

c(n−1)(p) = max
U

[
fu(p,U) ,U

(n−1)
−1 (p) 6 U 6 U(n−1)

1 (p)
]
, p ∈ Ω . (7)

Boglaev [2] proved that the sequences {U(n)
α } for α = ±1, generated by (5)–(7),

converge monotonically and quadratically to a unique solution U∗ of (3).

2.2 The monotone inexact methods

For solving the linear systems (5), we employ the Jacobi or Gauss–Seidel
iterative methods and show that inexact iterative methods still maintain
the monotone convergence of the iterative sequences. We write the linear
problems (6) in the equivalent form for α = ±1,

L(n)U(n)
α (p) +Φ(p,U(n−1)

α ) = 0 , p ∈ Ω , (8)

L(n) ≡ L+ c(n−1)(p) ,

Φ(p,U(n−1)
α ) = −c(n−1)(p)U(n−1)

α (p) + f(p,U(n−1)
α ) ,

U(n)
α (p) = g(p) , p ∈ ∂Ω .

The iterative sequences {U(n,i)
α (p)} for i = 0, 1, . . . , generated by the Jacobi
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and Gauss–Seidel methods, are defined by the recurrence formulae

L(n)
∗ Z

(n,i)
α (p) = −H(p,U(n,i−1)

α ) , p ∈ Ω , Z(n,i)
α (p) = 0 , p ∈ ∂Ω , (9)

Z(n,i)
α (p) = U(n,i)

α (p) −U(n,i−1)
α (p) , p ∈ Ω , i > 1 ,

U(n,0)
α (p) = U(n−1)

α (p) , p ∈ Ω ,

H(p,U(n,i−1)
α ) ≡ L(n)U(n,i−1)

α (p) +Φ(n)
α (p) ,

where Φ(n)
α (p) ≡ Φ(p,U(n−1)

α ), and H(p,U(n,i−1)
α ) are the residuals of the

difference equations (8) on U(n,i−1)
α (p). For the Jacobi and Gauss–Seidel

methods, L(n)
∗ is defined by

L(n)
∗ Z

(n,i)
α (p) =

{
L

(n)
jacZ

(n,i)
α (p) = [d(p) + c(n−1)(p)]Z

(n,i)
α (p) ,

L
(n)
gs Z

(n,i)
α (p) = L

(n)
jacZ

(n,i)
α (p) −

∑
p ′∈σ ′L(p)

a(p,p ′)Z(n,i)
α (p ′) ,

(10)
where L(n)

jac and L
(n)
gs denote the difference operators in the Jacobi and Gauss–

Seidel methods, respectively, and σ ′L(p) is a set of stencil points corresponding
to a strictly lower triangular part of σ(p).

Remark 3. The sequences {U
(n)
α } with α = ±1 and n > 0 are called outer

iterations, and for n fixed, the sequences {U(n,i)
α } with α = ±1 and i > 0 are

called inner iterations.

Lemma 4. Let the coefficients d(p) and a(p,p ′) in the difference operator L
from (3) satisfy (4) and the mesh Ω be connected. Then for the difference
operators L(n)

jac and L
(n)
gs from (10), the maximum principle in Lemma 2 holds.

Proof: In the case of L(n)
jac, d(p) + c(n−1)(p) > 0 is a diagonal entry and

a(p,p ′) = 0 for p ′ ∈ σ ′(p) . In the case of L(n)
gs , d(p) + c(n−1)(p) > 0 is a

diagonal entry and a(p,p ′) > 0 for p ′ ∈ σ ′L(p) . Thus, the coefficients of
the difference operators L(n)

jac and L
(n)
gs satisfy the conditions (4). From here
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and (7) it follows that

d(p) + c(n−1)(p) −
∑

p ′∈σ ′L(p)

a(p,p ′) > d(p) −
∑

p ′∈σ ′(p)

a(p,p ′) > 0 .

Thus, from Lemma 2, we conclude the maximum principle for L(n)
jac and L

(n)
gs .
♠

In the following theorem, we prove the monotone property of the inexact
iterative methods from (5)–(7), (9) and (10).

Theorem 5. Under the assumptions of Lemma 4, the sequences {U
(n)
α } and

{U
(n,i)
α } for α = ±1 , generated by (5)–(7), (9), (10) are, respectively, upper

and lower solutions and converge monotonically:

U
(n−1)
−1 (p) 6 U(n,i−1)

−1 (p) 6 U(n,i)
−1 (p) 6 U(n,i)

1 (p) , p ∈ Ω , (11)

U
(n,i)
1 (p) 6 U(n,i−1)

1 (p) 6 U(n−1)
1 (p) , p ∈ Ω ,

where i > 1, U(n,0)
α (p) = U

(n−1)
α (p) and U(n)

α (p) = U
(n,in)
α (p) for α = ±1 ,

and in is a number of iterative steps in the iterative method (9) for n fixed.
The upper sequence {U

(n)
1 } converges from above to the unique solution U∗

of (3) and the lower sequence {U
(n)
−1 } converges from below to U∗.

Proof: Boglaev [2] proved the existence of the unique solution U∗ of (3).

Taking into account that

U(1,0)
α (p) = U(0)

α (p) , H(p,U(0)
α ) = R(p,U(0)

α ) , p ∈ Ω, α = ±1 ,
R(p,U(0)

1 ) > 0 , R(p,U(0)
−1) 6 0 , p ∈ Ω ,

from (9), by the maximum principle in Lemma 4, we conclude that

Z
(1,1)
−1 (p) > 0 , Z

(1,1)
1 (p) 6 0 , p ∈ Ω . (12)
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Thus, U(0)
−1(p) 6 U

(1,1)
−1 (p) and U(1,1)

1 (p) 6 U(0)
1 (p) for p ∈ Ω . We now prove

that
U

(1,1)
−1 (p) 6 U(1,1)

1 (p) , p ∈ Ω . (13)

Introduce the notation

W(n,i)(p) = U
(n,i)
1 (p) −U

(n,i)
−1 (p) , W(n)(p) = U

(n)
1 (p) −U

(n)
−1 (p) . (14)

For U(p) > V(p) with p ∈ Ω , we define the sector 〈V ,U〉 = {V(p) 6W(p) 6
U(p) ,p ∈ Ω} . Using the mean-value theorem, from (9), we get the difference
problem for W(1,1):

L(1)
∗ W

(1,1)(p) = (L(1)
∗ − L(1))W(0)(p) + (c(0)(p) − fu(p,Q(0)))W(0)(p) ,

p ∈ Ω , W(1,1)(p) = 0 , p ∈ ∂Ω , (15)

where Q(0) ∈ 〈U(0)
−1 ,U

(0)
1 〉 . From here, (4), (8) and (10), we obtain

(L(1)
∗ − L(1))W(0)(p) =

∑
p ′∈σ ′∗(p)

a(p,p ′)W(0)(p ′) ,

where σ ′∗(p) = σ ′(p) for L
(n)
jac and σ ′∗(p) = σ ′U(p) for L

(n)
gs , where σ ′U(p) is a

set of stencil points corresponding to a strictly upper triangular part of σ(p).
From here, (4), (7) and taking into account that U(n)

−1 (p) 6 U
(n)
1 (p) , by

Lemma 4 applied to (15), we conclude that W(1,1)(p) > 0 for p ∈ Ω , and
prove (13). From (12) and (13), follows (11) for n = 1 and i = 1 .

We now show that U(1,1)
α are upper (α = 1) and lower (α = −1) solutions to

problems (8) and (3), that is,

H(p,U(1,1)
1 ) > 0 , H(p,U(1,1)

−1 ) 6 0 , p ∈ Ω , (16)

R(p,U(1,1)
1 ) > 0 , R(p,U(1,1)

−1 ) 6 0 , p ∈ Ω .

We represent H(p,U(1,1)
α ) with α = ±1 in the form

H(p,U(1,1)
α ) = L(1)U(1,1)

α (p) +Φ(1)
α (p) = L(1)Z(1,1)

α (p) +H(p,U(1,0)
α ) ,
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whereH(p,U(1,0)
α ) = H(p,U(0)

α . Using the above difference equations for Z(1,1)
α

with α = ±1 , from (3), (9) and (10), we get

H(p,U(1,1)
α ) = (L(1)−L(1)

∗ )Z(1,1)
α (p) = −

∑
p ′∈σ ′∗(p)

a(p,p ′)Z(1,1)
α (p ′) , p ∈ Ω ,

(17)
where σ ′∗(p) = σ ′(p) for L

(n)
jac and σ ′∗(p) = σ ′U(p) for L

(n)
gs . From here, (4)

and (12), we prove (16) for H(p,U(1,1)
α ) for α = ±1 .

To prove (16) for R(p,U(1,1)
α ) with α = ±1 , from (9) and using the mean-value

theorem, we represent H(p,U(1,1)
α ) in the form

H(p,U(1,1)
α ) =

[
c(0)(p) − fu(p,E(1,1)α )

] [
U(1,1)
α (p) −U(0)

α (p)
]
+ R(p,U(1,1)

α ) ,
(18)

where E(1,1)1 ∈ 〈U(1,1)
1 ,U(0)

1 〉 and E
(1,1)
−1 ∈ 〈U

(0)
−1 ,U

(1,1)
−1 〉 . From here, (7), (12)

and (16), we conclude that

R(p,U(1,1)
1 ) > H(p,U(1,1)

1 ) > 0 , R(p,U(1,1)
−1 ) 6 H(p,U(1,1)

−1 ) 6 0 , p ∈ Ω .
(19)

Thus, we prove (16) for R(p,U(1,1)
α ) with α = ±1 .

From (9) and (16), by the maximum principle in Lemma 4, we conclude that

Z
(1,2)
−1 (p) > 0 , Z

(1,2)
1 (p) 6 0 , p ∈ Ω . (20)

Thus,

U
(0)
−1(p) 6 U

(1,1)
−1 (p) 6 U(1,2)

−1 (p) , U
(1,2)
1 (p) 6 U(1,1)

1 (p) 6 U(0)
1 (p) , p ∈ Ω .

We now prove that

U
(1,2)
−1 (p) 6 U(1,2)

1 (p) , p ∈ Ω . (21)

Similar to (15), using the mean-value theorem, from (9), we get the difference
problem for W(1,2):

L(1)
∗ W

(1,2)(p) =
[
L(1)
∗ − L(1)

]
W(1,1)(p) +

[
c(0)(p) − fu(p,Q(0))

]
W(0)(p) ,

p ∈ Ω , W(1,2)(p) = 0 , p ∈ ∂Ω , (22)
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where Q(0) ∈ 〈V(0)
−1 ,V

(0)
1 〉 . From here, (4), (8) and (10),

(L(1)
∗ − L(1))W(1,1)(p) =

∑
p ′∈σ ′∗(p)

a(p,p ′)W(1,1)(p ′) , (23)

where σ ′∗(p) = σ ′(p) for L(n)
jac and σ ′∗(p) = σ ′U(p) for L

(n)
gs . From here, (4),

(7), (11) with n = 1, i = 1, and taking into account that U(n)
−1 (p) 6 U

(n)
1 (p) ,

by Lemma 4 applied to (22), we conclude that W(1,2)(p) > 0 for p ∈ Ω and
prove (21). From (20) and (21), follows (11) for n = 1 and i = 2 .

This completes the proof that U(1,2)
α are upper (α = 1) and lower (α = −1)

solutions to problems (8) and (3), which is equivalent to (16).

By induction on i, we prove (11) for n = 1 , and prove that U(1)
1 = U

(1,i1)
1

and U(1)
−1 = U

(1,i1)
−1 are, respectively, upper and lower solutions to (3). Now,

by induction on n and i, we prove (11).

The upper sequence {U
(n)
1 } is a monotone decreasing sequence, which is

bounded by U(0)
−1 . From here it follows that limn→∞ Z(n)

1 (p) = 0 for p ∈ Ω .
From here and (6) we conclude that limn→∞ R(p,U(n)

1 ) = 0 for p ∈ Ω . Thus,
limn→∞U(n)

1 (p) = U∗(p) for p ∈ Ω . Similarly, we can prove this result for
the lower sequence {U

(n)
−1 }. ♠

3 Numerical experiments

In this section, we compare numerically convergence properties of the inexact
monotone Jacobi and Gauss–Seidel methods and the corresponding mono-
tone iterative methods of Boglaev [3]. The monotone iterative methods of
Boglaev [3] are constructed using the assumption that

0 < c∗ 6 fu 6 c
∗ , c∗, c∗ = const > 0 . (24)
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These methods utilize c∗ in (6) instead of c(n−1)(p). Denoting the difference
operators L∗, Ljac and Lgs from (10) with c(n−1)(p) = c∗ by L̃∗, L̃jac and L̃gs,
respectively, we present the methods of Boglaev [3] in the form of (5) and the
recurrence formulae

L̃∗Z̃
(n)
α (p) = −R(p, Ũ(n−1)

α ) , p ∈ Ω , (25)

Z̃(n)
α (p) = Ũ(n)

α (p) − Ũ(n−1)
α (p) , p ∈ Ω , Z̃(n)

α (p) = 0 , p ∈ ∂Ω ,

R(p, Ũ(n−1)
α ) ≡ LŨ(n−1)

α (p) + f(p, Ũ(n−1)
α ) , α = ±1 ,

where

L̃∗ =

{
L̃jacŨ

(n)
α (p) = [d(p) + c∗]Ũ

(n)
α (p) ,

L̃gsŨ
(n)
α (p) = L̃jacŨ

(n)
α (p) −

∑
p ′∈σ ′L(p)

a(p,p ′)Ũ(n)
α (p ′) .

Boglaev [3] proved that the monotone iterative methods (5) and (25) converge
linearly to the solution of the nonlinear difference scheme (3).

Our implementation of the inexact monotone Jacobi and Gauss–Seidel iter-
ative methods is based on the framework of an inexact Newton method by
Dembo et al. [5]. Dembo et al. [5] defined an inexact Newton method as a gen-
eralization of Newton’s method for solving the system of nonlinear equations
F(x) = 0 for F : Rκ → Rκ . At the mth iteration, the step sm = xm+1 − xm is
defined by

F ′(xm)sm = −F(xm) + rm ,

and satisfies
‖rm‖
‖F(xm)‖

6 ηm ,

where ηm ∈ [0, 1) is the forcing term. One advantage of using an iterative
method to solve the Newton linear system F(xm)sm = −F(xm) approximately
is that the system does not need to be solved too accurately in the early stages
of the Newton iteration. Thus, the inexact Newton method offers a trade-off
between the accuracy with which the Newton system is solved and the amount
of work per iteration. In typical applications, the choice of the forcing terms
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is critical to the efficiency of the method and can affect robustness [6]. For
the nonlinear system F(x) = 0 , our choice of forcing term ηm is

ηm =

{
ηmax , m = 0 ,
min (ηmax, ‖rm‖/‖F(xm‖) , m > 0 ,

where ηmax ∈ (0, 1) [6].

For the inexact monotone Jacobi and Gauss–Seidel iterative methods, the
forcing term is

η(n−1)α =

{
ηmax,α , n = 1 ,
min

(
ηmax,α ,

‖H(·,U(n,i)
α )‖Ω

‖R(·,U(n−1)
α )‖Ω

)
, n > 1 ,

where ηmax,α ∈ (0, 1) . The stopping test for outer iterations is chosen to be

‖R(·,U(n)
α )‖Ω 6 δ , α = ±1 , (26)

where δ is a prescribed accuracy.

As the test problem for (1), we consider the diffusion-reaction problem

− (uxx + uyy) + (e−1 − e−u) = 0 , (x,y) ∈ ω ,
ω = {0 < x < 1}× {0 < y < 1} , u(x,y) = 0 , (x,y) ∈ ∂ω .

From fu = e−u > 0 and 0 6 u 6 1 , condition (2) is satisfied with c∗ = e−1.
From here and u > 0 we conclude that c∗ = 1 in (24). Since fuu = −e−u < 0 ,
in (7) c(n−1)(p) = fu(p,U

(n−1)
−1 ) [2]. For the approximation of the differential

operator, we use the central difference approximations on the five-point square
stencil with N1 = N2 = N , which satisfies (4). A lower solution is defined
by U(0)

−1(Ω) = 0 and U(0)
−1(∂Ω) = 1 . We choose the convergence tolerance

δ = 10−5 in (26).

In Table 1, for various values of N, we give convergence iteration counts. Here
I1 and I2 are the results, corresponding the monotone iterative methods of
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Table 1: Comparison of iteration counts.
N 16 32 64 128

Jacobi method
I1 557 2233 8934 35740

I2 400(5) 1321(5) 4521(5) 17979(5)
ηmax 0.095 0.097 0.098 0.098
I1/I2 1.392 1.690 1.976 1.999

Gauss–Seidel method
I1 281 1118 4469 17872

I2 224(5) 707(5) 2744(5) 10324(6)
ηmax 0.096 0.097 0.098 0.098
I1/I2 1.232 1.458 1.629 1.731

Boglaev [3] and the inexact monotone iterative methods (5)–(7), (9), (10),
respectively. Also, a number in (·) indicates the number of outer iterations.
Optimal values of ηmax are also provided.

From the numerical data it follows that for all values ofN the inexact monotone
methods converge faster than the corresponding monotone iterative methods
of Boglaev [3]. The iterative methods of Boglaev [3] utilize the constant c∗
in (6), which is independent of n. Although the mesh function c(n−1) in (6)
is computed at each outer iteration, the overall amount of computational
work in the inexact monotone methods is much less than in the case of the
iterative methods of Boglaev [3].
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