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A coupled FEM-BEM algorithm for the
inverse acoustic medium problem
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Abstract

We present a numerical scheme for reconstructing the refractive
index of an inhomogeneous two dimensional medium using acoustic far
field data. The numerical scheme is based only on the mild assumption
that the inhomogeneous medium is contained in the unit disk, and does
not require axis-symmetry or other similar restrictions. Reconstruction
of the refractive index, without the assumption of axis-symmetry, is
achieved using an expansion in the high order Logan–Shepp polynomials.
The Logan–Shepp expansion coefficients of the refractive index are
formulated as the solution of a nonlinear equation, which is solved
using a regularised Newton-type solver. Nonlinear function evaluations,
which involve solving a forward scattering problem, are performed
using an efficient coupled finite-element/boundary element method,
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which ensures that the radiation condition is incorporated exactly. The
scheme is demonstrated by reconstructing challenging continuous and
discontinous media from noisy far field data.
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1 Introduction

The inverse medium problem arises when the material properties of an un-
known medium are investigated by illuminating the medium with acoustic
or electromagnetic waves and measuring the induced scattered field. We
present an algorithm to reconstruct the material properties of the medium
from measurements of the scattered field. Important applications include
nondestructive testing, seismic inversion, and medical imaging. We consider
the two dimensional acoustic inverse medium problem, which arises in elec-
tromagnetic and acoustic imaging of anisotropic media with a cylindrical
structure.
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In particular, we consider the interaction of an incident plane wave

uinc(x) = eikx·d̂ , (1)

with a two dimensional inhomogeneous medium described by the refractive
index m(x) for x ∈ R2. Here k is the incident wavenumber, and the unit
vector d̂ is the plane wave direction.

We make the mild assumption that the inhomogeneity of the medium is
contained in the unit disk B centred at the origin. Outside the unit disk the
refractive index is constant, and we normalise so that

m(x) = 1 , x /∈ B .

We refer to the inhomogeneous medium inside B as the scatterer.

Interaction of the incident field uinc with the scatterer produces an induced
field u. It is natural to split u into an exterior scattered field us and an
interior field ui. Thus

u(x) =

{
ui(x) , for x ∈ B ,
us(x) , for x /∈ B . (2)

In many applications, the quantity of interest is the far field of the scatterer,

u∞(x̂) = lim
|x|→∞

√
|x|e−ik|x|us(x) , (3)

where x̂ = x/|x| .

The scattered field satisfies the homogeneous Helmholtz equation

∆us(x) + k2us(x) = 0 , x ∈ R2 \ B , (4)

and the Sommerfeld radiation condition [4, Eqn. (3.85)]

lim
|x|→∞

√
|x|

(
∂us

∂x
(x) − ikus(x)

)
= 0 , (5)
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uniformly with respect to the direction x̂. The interior field satisfies the
inhomogeneous Helmholtz equation

∆ui(x) + k2m(x)ui(x) = 0 , x ∈ B . (6)

The total field is

utot(x) =

{
ui(x) , for x ∈ B ,
us(x) + uinc(x) , for x /∈ B , (7)

and continuity of the total field and its normal derivative across the bound-
ary ∂B of B yields the transmission boundary conditions

us(x) + uinc(x) = ui(x) , for x ∈ ∂B , (8)
∂us

∂n
(x) +

∂uinc

∂n
(x) =

∂ui

∂n
(x) , for x ∈ ∂B , (9)

where n(x) denotes the unit outward normal to ∂B at x.

For a given incident direction d̂ and given refractive index m(x), the forward
problem is to compute the induced fields us and ui that satisfy (4)–(9) and the
corresponding far field. Section 2 describes the coupled finite and boundary
element method (fem-bem) scheme for the forward scattering problem.

Our focus is on solving the corresponding inverse problem, that is, computing
the refractive index m using given far field data. Our starting point is
an efficient solver for the forward problem based on the coupled fem-bem
scheme [12]. This scheme employs the flexibility of the finite element method
for the bounded inhomogeneous medium in B, and the efficiency of the
boundary element method for the unbounded homogeneous medium exterior
to B. A particular advantage of this approach is that the radiation condition (5)
is satisfied exactly.

A key feature of our algorithm, that allows us to avoid assumptions such
as axis-symmetry of the refractive index, is the use of the Logan–Shepp
polynomials [13] as a basis for the high order approximation of the refractive
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index function m inside B. These polynomials were recently used to compute
high order approximations on the disk for various elliptic pde problems [2].

Typically coarse scale features, such as the location and extent of inho-
mogeneities in the refractive index, are the key features of interest. We
demonstrate in several examples that Logan–Shepp polynomials with degree
of the order of ten are sufficient for reconstructing the key features of the
refractive index m. Section 3 formulates the inverse problem as an ill-posed
nonlinear equation, which we solve for the Logan–Shepp expansion coefficients
using the Levenburg–Marquardt algorithm [8, 4, 11]. A consequence of the
low polynomial degree is that the corresponding low dimensional discrete
nonlinear problems are solved cheaply by assembling the Jacobian and using
a direct solver.

The extensive literature on inverse scattering problems [4, and references
therein] is predominantly focused on the problem of reconstructing the shape
(or impedence) of impenetrable scatterers. The theory for the inverse medium
problem is comparatively undeveloped, and uniqueness results do not sharply
specify the type or quantity of data required [4, §10.2]. However, Newton-
type methods were successfully applied to the inverse medium problem. In
particular, for square (or cubic) domains the quasi-Newton method was
applied to compute the tensor product Fourier coefficients of the refractive
index [7, 5, 6]. For three dimensional spherical domains, the refractive
index was represented using a tensor product of the spherical harmonics and
splines [9, 10]. In the latter case, the scattering problem was reformulated
using the Lippman–Schwinger volume integral equations, and the resulting
nonlinear problem was solved using the Levenburg–Marquardt iteration. We
are not aware of any other articles that use a coupled fem-bem formulation
for the forward scattering problem. The fem-bem based scheme presented
here has several advantages, including its straightforward implementation.
Section 4 presents numerical results demonstrating the ability of our algorithm
to reconstruct several test media.
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2 Coupled FEM-BEM method

In this section we consider the forward problem with fixed incident direction d̂
and given refractive index m(x) for x ∈ B . Following Kirsch and Monk [12],
we introduce independent exterior and interior problems related to the forward
problem (4)–(9) that are efficiently solved using the Nyström and finite element
methods, respectively.

Exterior problem For given Robin boundary data λ defined on ∂B, the
exterior problem is to compute the radiating solution w that satisfies

∆w(x) + k2w(x) = 0 , x ∈ R2 \ B , (10)
∂w

∂n
(x) + ikw(x) = λ(x) , x ∈ ∂B . (11)

For this direct scattering problem, posed with a Robin boundary condition,
it is efficient to use the surface integral representation

w(x) =

∫
∂B

[
∂G(x,y)
∂n(y)

w(y) −G(x,y)
∂w(y)

∂n

]
ds(y) , (12)

where x ∈ R2 \ B and G(x,y) is the free space Green’s function for the two
dimensional Helmholtz equation. Enforcing the boundary condition (11) and
applying the jump relations [4, Thm. 3.1, p. 40] for the single- and double-layer
potential operators yields the second kind integral equation

w(x) − 2

∫
∂B

∂G(x,y)
∂n(y)

w(y)ds(y) − 2ik

∫
∂B

G(x,y)w(y)ds(y)

= −2

∫
∂B

G(x,y)λ(y)ds(y) , x ∈ ∂B . (13)

It is convenient to define Feλ = w , where w is the solution of (13) on ∂B with
given Robin boundary data λ. In our implementation we solve (13) using
the high order Nyström scheme described by Colton and Kress [4, §3.5] with
equally spaced quadrature points x1, . . . , xM on ∂B.
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Interior problem For given Robin boundary data λ defined on ∂B, the
interior problem is to compute the field v that satisfies

∆v(x) + k2m(x)v(x) = 0 , x ∈ B , (14)
∂v

∂n
(x) + ikv(x) = λ(x) , x ∈ ∂B . (15)

It is convenient to define Fiλ = v|∂B , where v is the solution of (14)–(15)
with given Robin boundary data λ. Using a test function φ and Green’s first
identity leads to the weak equation∫

B

(∇v · ∇φ− k2mvφ)dv+ ik

∫
∂B

vφds =

∫
∂B

λφds . (16)

We solve (16) using the finite element method, with piecewise linear functions
defined on a triangular mesh for the interior region B, with (16) required to
hold for all test functions φ in the standard nodal finite dimensional basis.
The triangular mesh is chosen so that that the mesh points at the boundary
include the quadature points x1, . . . , xM in the Nyström scheme described
above.

Coupled fem-bem For Robin boundary data λ, the fields

us = Feλ , (17)
ui = Fi(λ+ Ru

inc) , (18)

satisfy (4)–(6), and the Robin trace of the total field (7) is continuous
across ∂B. Here, for brevity, we denote by Ru the Robin trace of u,

(Ru)(x) =
∂u

∂n
(x) + iku(x) , x ∈ ∂B .

To construct fields (17)–(18) that satisfy the transmission boundary condi-
tions (8)–(9), we choose λ such that the Dirichlet trace of the total field is
also continuous across ∂B, that is,

Feλ+ u
inc = Fi(λ+ Ru

inc) , on ∂B. (19)
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It is convenient to parametrise ∂B using polar coordinates, and approximate
the solution λ of (19) in the finite dimensional space spanned by {einθ :
n = −(N + 1), . . . ,N} using a Galerkin scheme. Here θ denotes the angle
in polar coordinates. The Galerkin scheme is implemented with respect to
the standard inner product on ∂B. In practice, integrals involved in the
inner product are evaluated using the rectangle rule (which has high order
accuracy on ∂B). In our implementation, we choose the quadrature points
to coincide with the Nyström points x1, . . . , xM. The operators Fe and Fi in
our Galerkin scheme are evaluated numerically using the Nyström scheme or
fem, respectively.

Once λ is computed, the far field of us is given by [4, Eqn. (3.87), p. 75]

u∞(x̂) =
eiπ/4√
8πk

∫
∂B

[
∂e−ikx̂·y

∂n(y)
w(y) + ike−ikx̂·yw(y) − e−ikx̂·yλ(y)

]
ds(y) .

3 Inverse problem

In this section we describe our approach for reconstructing the refractive
indexm from given far field data. To simplify the description of our algorithm,
we assume that the given far field data is for a single incident direction d̂.
Extension to the case of several incident directions is straightforward.

We assume that we are given far field data gs for s = 0, . . . ,S−1 corresponding
to observation directions

x̂s =
2πs

S
, s = 0, . . . ,S− 1 .

This far field data may include numerical or measurement errors, or other
noise.

We seek an approximation to the refractive index m of the form

mL(x) =

L∑
l=0

l∑
j=0

ml,jPl,j(x) , x ∈ B , (20)
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where the Logan–Shepp polynomial

Pl,j(x) =
1√
π
Ul(x ·wl,j) , for j < l , l ∈ N and x ∈ B , (21)

where
wl,j =

(
cos

jπ

l+ 1
, sin

jπ

l+ 1

)
, for j < l and l ∈ N ,

and Ul is the degree l Chebyshev polynomial of the second kind [1, Chap. 22].
The Logan–Shepp polynomials are orthogonal on the disk B and are used to
approximate functions with high order accuracy. We show in our numerical
experiments that L = 15 is sufficient to reconstruct the key features of the
refractive index for a range of smooth and non-smooth inhomogeneous media.

We split the given far field data g0, . . . ,gS−1 into real and imaginary parts to
construct g = (g0, . . . , g2S−1) where

gs =
{

Regs , for 0 6 s 6 S− 1 ,
Imgs−S , for S 6 s 6 2S− 1 . (22)

We then reformulate the inverse medium problem as a finite dimensional real
nonlinear problem of finding the vector m = (ml,j)j<l6L of spectral coefficients
in the expansion (20), satisfying

F(m) = g , (23)

where the nonlinear function F : RNL → R2S is defined by F(m) = f , where
the vector f = (f0, . . . , f2S−1) for

fs =
{

Reu∞(x̂s;mL) , for 0 6 s 6 S− 1 ,
Imu∞(x̂s−S;mL) , for S 6 s 6 2S− 1 , (24)

and u∞(·;mL) denotes the numerical approximation to the far field of the
scattererer with refractive index mL, computed using the coupled fem-bem
scheme in the previous section. Here NL = (L+ 1)(L+ 2)/2 is the dimension
of the ansatz space for the reconstructed refractive index.
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We solve the ill–posed nonlinear problem (23) using the Levenburg–Marquardt
iteration [8, 4, 11]. Due to the low dimension of the ansatz space, it is feasible
to assemble a numerical approximation to the derivative of the nonlinear
operator F using forward differences. In particular, although a forward
problem with a different inhomogeneous medium must be solved numerically
for each column of the derivative, the bem part is independent of the medium
and the fem part is cheap, provided the wavelength is not too small. In
our implementation we take advantage of the independence of the interior
problems for each column of the derivative by computing the columns in
parallel.

In our numerical experiments we found it useful to decompose the complex far
field values into real and imaginary parts in (22) and (24), because (23) is then
solved in real arithmetic, which naturally enforces the physically appropriate
condition that the refractive index is real valued.

4 Numerical experiments

In this section we demonstrate our algorithm by reconstructing the refractive
index function of several test inhomogeneous media. In particular, our test
problems are as follows.

• Bowl: the inhomogeneous region is the off-centre disk of radius 1/2
centred on c = (0.3, 0.3) . The continuous refractive index function is

m(x) =

{
2− 4|x− c|2 , for |x− c| < 1/2 ,
1, otherwise.

• Ellipse: the inhomogeneous region is contained inside an ellipse. The
discontinous refractive index function is

m(x) =

{
1.21, for x21/42 + x22/52 6 1/102 ,
1, otherwise.
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• Three disks: the inhomogeneous region comprises three disks of
radius 1/4 and centres c1 = (0.4, 0) , c2 = (−0.2, 0.346) and c3 =
(0.2,−0.346). The discontinous refractive index function is

m(x) =


1.21, for |x− c1| < 1/4 ,
1.21, for |x− c2| < 1/4 ,
1.44, for |x− c3| < 1/4 ,
1, otherwise.

For the bowl problem we use our coupled fem-bem forward solver to compute
the far field corresponding to the inhomogeneous medium, and we generate
our reference data by adding Gaussian noise. For the discontinuous ellipse
and three disks media we generate reference data using solvers that are
independent of our coupled fem-bem code. In particular, for the three disks
problem the reference data is generated using a multiple scattering version
of the Mie series. For the discontinous ellipse problem, the reference data
is generated using a surface integral equation formulation [3] that we solve
using a high order Nyström scheme [4, §3.5]. Thus none of our numerical
experiments are subject to the so called inverse crime of using data that is
generated directly by the forward solver used for the inversion.

Table 1 demonstrates the small number of degrees of freedom required to
approximate the refractive indices of our test media using the Logan–Shepp
expansion (20). In particular, we tabulate the relative L2 error in the discrete
orthogonal projection of the refractive index. In practice, the L2 norm is
approximated using a Gauss-rectangle rule with more than 20 000 points in
the disk. The slow convergence observed in Table 1 is due to the low regularity
of the refractive index functions (the refractive indices of the ellipse and three
disks media are discontinuous).

Motivated by the results in Table 1, we apply our algorithm to reconstruct the
three test media from far field data, using polynomials of degree L = 15 in the
Logan–Shepp expansion (20). In Table 2 we tabulate the relative L2 error in
the reconstructed refractive index m(x) in the unit disk for each medium, and
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Table 1: Relative L2 error of the discrete orthogonal projection of the
refractive index against number of degrees of freedom (dof).

error error error
degree L dof NL bowl ellipse three disks

5 21 6.6% 4.3% 9.1%
10 66 2.5% 3.3% 5.5%
15 136 1.4% 2.6% 5.3%

Table 2: Relative L2 error of the reconstructed refractive index functionm(x)
in the unit disk for Logan–Shepp polynomial degree L = 15 .

error error
medium noise σ k = π k = 2π

0 0.72% 3.4%
bowl 1× 10−2 8.1% 15%

5× 10−2 16% 24%
ellipse 0 9.4% 8.9%
three disks 0 18% 13%

for wavenumbers k = π and k = 2π . At these wavenumbers, the diameter
of the unit disk is one and two times the incident wavelength, respectively.
The cpu times for the bowl problem are 3.2 hours for the k = π case and
12.3 hours for the k = 2π case, using Matlab with the parallel computing
toolbox, running on a desktop machine with a quad-core 2.8GHz Intel Core
i7 processor. The cpu times for the ellipse and three disks problems are
similar. The reference data is obtained by adding Gaussian noise to simulated
far field values at 32 equally spaced points on the unit circle for each of the
six incident directions

d̂j =
2πj

6
, j = 0, . . . , 5 .

In particular, the reference data gs for s = 0, . . . ,S− 1 is obtained by adding
noise xs + iys to the simulated data where xs and ys for s = 0, . . . ,S − 1
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Figure 1: Reconstruction of the refractive index m(x) in the unit disk for
the bowl test problem with noise parameter σ = 5× 10−2, polynomial degree
L = 15 and six incident directions. The wavenumber is k = 2π and the
diameter of the domain equals twice the incident wavelength.

are independent samples of the Gaussian distribution with zero mean and
variance σ2.

In Figures 1 and 2 we visualise the reconstructed refractive indexm(x) for our
most difficult test problems. In both cases the Logan–Shepp polynomial degree
is L = 15 and the incident wavenumber is k = 2π . The relative L2 error in
the reconstruction of the bowl (with large noise parameter) is 24% (Figure 1).
The relative L2 error in the reconstruction of the three disks is 13% (Figure 2).
We do not expect very small errors for these problems, due to the low
regularity of the refractive index, but we get excellent reconstruction of the
key features of the media such as the locations, sizes and refractive indices of
any inhomogeneities.
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Figure 2: Reconstruction of the refractive index m(x) in the unit disk for
the three disks test problem with polynomial degree L = 15 and six incident
directions. The wavenumber is k = 2π and the diameter of the domain equals
twice the incident wavelength.

5 Conclusions

We demonstrated the effectiveness of our coupled fem-bem based scheme
for reconstructing the refractive index of an inhomogeneous two dimensional
medium from far field data. The fem-bem based scheme presented here
has several advantages, including its straightforward implementation. Ad-
ditionally, the fem-bem based scheme presented here is readily adapted
to non-circular domains bounding the inhomogeneity, and indeed, to more
complex geometries such as domains with inclusions. In future work we will
extend our scheme to reconstruct unknown media surrounding a perfectly
conducting inclusion.
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