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Abstract

We investigate travelling premixed reaction waves in a diffusional-
thermal model with a two-step competitive reaction mechanism where
both reactions are exothermic. Travelling waves are assumed to propa-
gate at constant speed. An approximation of the Arrhenius reaction
rate is adopted to simplify the combustion model. Based on this assump-
tion, an asymptotic theory is presented for solid fuels under adiabatic
conditions. This approach provides a convenient way to analyse the
system in the phase plane. The asymptotic speeds for the flame fronts
are compared with numerical solutions by solving the governing partial
differential equations. In addition, piecewise approximate solutions
for the temperature and fuel mass fraction profiles are presented and
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compared with those obtained numerically. Our results can be applied
to combustion synthesis in the production of advanced materials.
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1 Introduction

This work is concerned with the existence and propagation of reaction fronts
through reactive media in the presence of diffusive processes with two-step
reaction kinetics. We assume that both reactions are exothermic. Such
reactions have direct relevance to the combustion of MeCH2, where Me is
either Ti or Zr [1, 2]. Sidhu et al. [3] and Towers et al. [4] investigated flame
propagation in a model with two-stage competitive exothermic reactions (exo-
exo reactions) and demonstrated the existence of regions of bi-stability—where
stable solutions corresponding to slow and fast branches co-exist. Regions of
pulsating combustion waves were also reported by these authors.

Besides the two-step competitive exothermic reactions mentioned above, a
number of authors investigated reaction schemes where a main exothermic
reaction is accompanied by an endothermic reaction [5, 6, 7]. Hmaidi et al. [5]
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investigated the existence and stability of travelling one-dimension reaction
fronts propagating through a solid reactive slab (infinite Lewis number),
extending the work of Matkowshy and Sivashinsky [6] by including the effects
of heat loss through a competitive endothermic reaction. Forbes [7] proposed
an asymptotic approximation to the nonlinear temperature-dependent reaction
rates. A phase plane analysis was presented for this reaction scheme under
both adiabatic and non-adiabatic conditions. The results for the approximate
and numerical wave speeds show very close correspondence.

Here we present an analysis of a two-step competitive exo-exo reaction scheme,
using a similar approach to Forbes [7]. The approximation to the exponential
term of the Arrhenius function has two advantages: it avoids the ‘cold
boundary’ difficulty—the reactions occur as long as the temperature is greater
than absolute zero, which is not true in reality; and it simplifies the model
without increasing the number of dimensionless parameters. A phase plane
analysis is given for the evolutionary system for solid fuels under adiabatic
conditions. Numerical solutions, obtained by solving the full governing partial
differential equations using two independent approaches, are employed to
validate the asymptotic result. Additionally, piecewise approximate solutions
for the fuel and temperature profiles are presented. We also compare these
approximate solutions with those obtained via a standard shooting method
and with the solutions of the governing partial differential equations (pdes).

2 Governing equations

Consider a model with a two-step competitive reaction mechanism arranged
in a one-dimensional configuration, where both reactions are thermally and
chemically coupled. A general schematic for this process is

A
k1(T)−−−→ B+Q1 , A

k2(T)−−−→ C+Q2 , (1)

where A represents the reactant; B and C are chemically inert products
under different conditions which do not change their physical properties,
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such as density, heat capacity or the diffusivity of the system; Q1 describes
the heat released by the first reaction and Q2 is the heat released by the
second reaction. Here we assume neither Q1 nor Q2 is less than zero since
only the two-stage competitive exo-exo reaction scheme is of interest in
this investigation. The two reaction rates k1(T) and k2(T), assumed to be
dependent on the reaction temperature T , obey Arrhenius kinetics and have
the form ki(T) = Zie

−Ei/(RT) , where Zi and Ei are the first-order rates and
the activation energies, respectively, for the respective reaction i = 1, 2 . The
universal gas constant is R.

Following Towers et al. [4], the dimensionless governing equations derived
from the conservation of energy and fuel mass are

∂u

∂τ
=
∂2u

∂ξ2
+ vk1(u) + qrvk2(u) ,

∂v

∂τ
=
1

Le
∂2v

∂ξ2
− βvk1(u) − rβvk2(u) . (2)

In these equations, the dimensionless temperature and mass fraction are
u and v, respectively; and ξ and τ represent non-dimensional space and
time coordinates, respectively. Also, q = Q1/Q2 and r = Z1/Z2 . The
exothermicity parameter β is the ratio of activation energy to heat released by
the first reaction. The Lewis number Le is the ratio of thermal conductivity
to mass diffusivity, varying from around unity for gaseous fuels to infinity for
solid fuels [8].

Using the Arrhenius law to describe reaction rates has come under criticism
by several researchers [7, e.g.]. The main issue is that this approach implies
reactions occur at any temperature above absolute zero—the “cold boundary
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difficulty” [6, 8]. Adopting the approach of Forbes [7], the reaction rates are

k1(u) =

{
0, u < θ ,
1− exp[f(θ− u)] , u > θ ,

k2(u) =

{
0, u < θ ,
1− exp(θ− u) , u > θ ,

(3)

where f = E1/E2 and θ is the ignition temperature. The form of the reaction
rates (3) is more realistic than the Arrhenius form used elsewhere [3, 4, 5, 6]
as no reaction should occur when the fuel temperature is below the ignition
temperature. Considering the leading term only, the Taylor series of the two
reactions in equation (3) with center u0 = θ are

k1(u) ≈

{
0, u < θ ,
f(u− θ) , u > θ ,

k2(u) ≈

{
0, u < θ ,
u− θ , u > θ .

(4)

A new moving coordinate frame η = ξ−cτ is introduced where the constant c
is the speed of travelling waves. Consequently, the governing pdes are
transformed into a system of ordinary differential equations (odes). Then we
simplify the governing equations by using (4) without increasing the number
of dimensionless parameters by setting u , u − θ . Thus, the governing
pdes (2) are transformed to two second-order odes,

−cu ′ = u ′′ + (1+ qrf)vu ,

−cv ′ =
1

Le
v ′′ − (1+ rf)βvu , (5)

with the dash denoting ordinary differentiation with respect to η. The
evolutionary system (5) obeys the boundary conditions

u = θa , v = v0 , η→∞ ,
uη = 0 , vη = 0 , η→ −∞ . (6)
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The right boundary condition (η→∞) is a ‘cold’ and ‘unburnt’ state (the
dimensionless ambient temperature is θa and the consumption of the fuel is
negligible). For definiteness and without loss of generality, the initial mass
fraction v0 is chosen to be one. However, on the left boundary (η → −∞),
neither the temperature nor the mass fraction can be specified. No reaction is
supposed to occur at this steady state. Therefore, the derivatives of u and v
are set to zero for η→ −∞ .

3 Asymptotic analysis

In this section, travelling combustion wave solutions are sought to equation (5)
for solid fuels (the material diffusion is negligible and thus the Lewis number
is treated as infinite). The relevant second-order governing odes for solid
fuels are

−cu ′ = u ′′ + (1+ qrf)vu , (7)
−cv ′ = −(1+ rf)βvu . (8)

Substituting (8) into (7) leads to

− cu ′ = u ′′ + (1+ qrf)cv ′/(1+ rf)β . (9)

Integrating (9) once and utilizing the ‘cold’ and ‘unreacted’ upstream bound-
ary condition (u = 0 , v = 1 as η→∞) yields

v = 1− (u ′ + cu)/cλ , (10)

where λ = (1+qrf)/(1+ rf)β . Substituting (10) back into (7) to eliminate v
leads to

u ′′ +

(
c−

(1+ qrf)u

cλ

)
u ′ + (1+ qrf)u

(
1−

u

λ

)
= 0 . (11)



3 Asymptotic analysis C154

Equation (11) has two uniform stationary solutions: u = 0 and u = λ . Thus,
it is reasonable to assume the solutions to equation (11) satisfy the boundary
conditions

u→ λ , v→ 0 , η→ −∞ ,
u→ 0, v→ 1 , η→ +∞ . (12)

The right boundary condition (η → +∞) is a ‘cold’ and ‘unburnt’ state,
whereas the left (η→ −∞) corresponds to the ‘hot’ and ‘burnt’ state. The
temperature at the left boundary λ must be greater than zero for practical
interest. The ignition temperature θ can be any value not less than zero.
Hence, for definiteness and without loss of generality, the value is set to zero.

Equation (11) is amenable to analysis using the phase plane approach. We
rewrite (11) as a system of two first-order ordinary differential equations:

du

dη
= F ,

dF

dη
= −

[
c−

(1+ qrf)u

cλ

]
F− (1+ qrf)u

(
1−

u

λ

)
. (13)

To investigate the properties of the travelling waves, we linearize the system
about the two uniform steady states. For the stationary state (u, F) = (0, 0) ,
ahead of the flame front, the linearization of (13) yields the eigenvalues

µ+
1,2 =

−c±
√
c2 − 4(1+ qrf)

2
, (14)

with the corresponding eigenvectors k+1,2 = (1,µ+
1,2)

T . For real eigenvalues we
require c > 2

√
1+ qrf . The system (11) is of the Fisher-type, therefore the

physically realizable solution is the one with minimal speed (Fisher [7] and
Tikhomirov [8] provide details),

c = 2
√
1+ qrf . (15)

The stationary point u = 0 is a degenerate stable node where the wave
speed is given by (15). Similarly, we can determine the eigenvalues and the
corresponding eigenvectors at u = λ .
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Figure 1: Temperature and mass fraction profiles for a travelling wave with
parameter values q = 1 , r = 1/2 , f = 3/2 , β = 1 , v0 = 1 and θ0 = 0 . The
red solid line is the temperature profile and the blue dash line is the profile
of the fuel mass fraction.
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For illustrative purposes, we provide some sample results with parameter
values q = 1 , r = 1/2 , f = 3/2 , β = 1 , and the mass fraction is initially
v0 = 1 , while the initial conditions for temperature are θ0 = θ = 0 . The
temperature profile is obtained using a standard shooting method to solve (13).
Once the temperature profile is determined, the mass fraction profile is
obtained via relationship (10). The profiles of mass fraction and temperature
are shown in Figure 1. The temperature profile decreases monotonically from
the maximum value u = 1 (behind the front) to the ambient temperature
(ahead of the front). The fuel mass fraction profile increases monotonically
from the burnt value zero (behind the front) to the ‘unburnt’ value v0 = 1
(ahead of the front).

To validate the asymptotic results presented above we utilize two independent
methods to solve the governing pde system (2) with the rate functions (3):
the method of lines (mol) [10] and a commercial finite element package
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FlexpdeTM [4]. The initial mass fraction was set to the maximum value
v(x, 0) = 1 , whereas the temperature was initially taken to be a simple
Gaussian profile, u = A exp(−x2) where A is a constant. Varying A has
no impact on the numerical results presented here other than the length of
computational time that is required to obtain a steady propagating combustion
wave. When using the mol, a uniform grid of 1 501 mesh nodes was placed
along the x-axis over the interval 0 < x < 300 , and the time span was
t ∈ [0, 100] . The average speed obtained was c ≈ 2.642 . Increasing the
spatial and time intervals to 0 < x < 4000 and t ∈ [0, 1000] with 40 001 nodes
resulted in the average speed of the wave c ≈ 2.638 . When using the
commercial finite-element package FlexpdeTM, the average speeds for the
wave were found to be c ≈ 2.656 and c ≈ 2.639 , where the error tolerances
were set to 10−6 and 10−7, respectively. The asymptotic speed calculated
from (15) is c = 2.6458 . Therefore, the results from the two independent
numerical approaches provide a validation for the asymptotic results of the
adiabatic exo-exo scheme for solid fuels.

4 Piecewise approximation

In this section we obtain piecewise approximate solutions for the temperature
and fuel mass fraction profiles by replacing the non-linear terms in the
governing differential equation by a set of linear segments tangent to the
original curve [9]. Here we focus on the special case c = 2

√
1+ qrf . We

consider the simplest case of two segments. From our earlier analysis we know
that the critical point with u = 0 is a degenerate node and has eigenvalues
µ± = −c/2 . Furthermore, we also know that the stationary point with u = λ
has eigenvalues r+ = c/4 and r− = −c . Following Jovanoski and Robinson [9]
we write the two-segment approximate solution to (11) as

u(η) =

{
λ+ Cecη/4 +De−cη , η 6 η0 ,
Ae−cη/2 + Bηe−cη/2 , η > η0 .

(16)



4 Piecewise approximation C157

Since the solution is supposed to satisfy the asymptotic behaviour u → λ

when η → −∞ , we require D = 0 . Due to translational invariance, we
specify η0 = 0 and u(0) = λ/2 . Using the continuity of u(η) and of the
derivative u ′(η) at η0 yields A = c/2 , B = cλ/8 and C = −λ/2 . Thus, the
complete solution for (16) is

u(η) =

{
λ− 1

2
λecη/4, η 6 0 ,

1
2
λe−cη/2 + 1

8
cληe−cη/2, η > 0 .

(17)

Once u(η) is obtained, the approximate solution for mass fraction y(η) is
determined using the relationship (10). Hence we obtain

y(η) =

{
5
8
λecη/4, η 6 0,
1− 3

8
e−cη/2 − 1

16
cηe−cη/2, η > 0.

We extend the basic two-segment method outlined above to determine a
piecewise function with three segments to approximate the solution of sys-
tem (11). To do this we divide the domain into three subintervals (−∞,η1] ,
[η1,η2] and [η2,∞) . In particular, we specify η0 = 0 , u(0) = λ/2 and
η0 ∈ [η1,η2] . Then, the approximate solution for the temperature is

u(η) =


λ+ Cecη/4 +De−cη , η 6 η1 ,
λ/2+ u3(η) , η1 6 η 6 η2 ,
Ae−cη/2 + Bηe−cη/2 , η > η2 .

Substituting u into (11) over the domain [η1,η2] , the ode with respect to u3 is

u ′′3 +

(
c−

1+ k

2c

)
u ′3 +

(1+ k)λ

4
= 0 ,

where k = 1+ qrf . The ode above has the analytical solution

u3(η) = E−
(1+ k)λη

4[c− (1+ k)/2c]
+ Fe−η[c−(1+k)/2c] ,
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where E and F are constants. To determine the approximate solution using
three segments, the quantities A, B, C, D, E, F, η1 and η2, must be determined.
Requiring u→ 0 as η→ −∞ impliesD = 0 . We also assume that the solution
is twice continuously differentiable over the entire domain. The continuity
of u, u ′ and u ′′ at the matched points η = η1 , η = η2 yields six equations.
Due to translational invariance, we specify u(0) = λ/2 . Thus, we establish
seven equations to solve seven unknown parameters. The system of seven
equations has the unique solution

A = 0.3187 λ , B = 0.8500 λ , C = −0.6250 λ , E = −F ,
F = −0.0005 λ , η1 = −1.5633 , η2 = 1.1364 .

Having determined u(η), the fuel mass fraction profile y(η) is obtained
via (10). The profiles for the temperature and mass fraction are shown in
Figures 2 and 3, respectively. As well as the approximate solutions, the
numerical solutions obtained by the standard shooting method solving (11),
and the mol solutions from the governing pdes (2) with the reaction rates (4)
are also shown. Both of these numerical approaches result in solutions that
correspond well with each other (maximum difference being around 10−3). The
two-segment and three-segment approximate solutions agree with asymptotic
behaviours as η → ±∞ . However, both Figures 2 and 3 clearly show that
although the two-segment approach provides a reasonable solution, the three-
segment approximation is much better over the entire domain. Compared with
the numerical solutions, the maximum error of the two-segment approximation
is around 12%, whereas the maximum error falls sharply to around 3% when
using the three-segment approach.

5 Conclusion

We utilize the asymptotic approximate method of Forbes [7] to study combus-
tion waves for a two-stage competitive exo-exo reaction scheme for solid fuels
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Figure 2: The temperature profile for a travelling wave with the same parame-
ter values as in Figure 1. Results are obtained using the shooting method (red
solid line), the mol on pdes (2) with (4) (green circles), and the two-segment
(blue dashed line) and three-segment (black dot line) approximate solutions.
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Figure 3: The fuel mass fraction profile. The notation, symbols and parameter
values are the same as in Figure 2.
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under adiabatic conditions. By approximating the Arrhenius-type reaction
rates with the leading term, the system reduces to a simple second-order ode
which is easily analysed in the phase-plane. By undertaking such an analysis
we obtain an explicit form for the speed of the reaction wave. Despite the
‘crude’ approximation used, the asymptotic results obtained for the speeds
of the reaction waves show remarkable agreement with numerical solutions
obtained by solving the governing pdes (2) with rate functions (3) using two
independent approaches. Similar agreement for the wave speeds was observed
by Forbes [7] for the competitive endothermic-exothermic reaction scheme.

In this study we also used the piecewise linear approximation to obtain the
temperature and fuel mass fraction profiles. Once again the results show con-
siderable accuracy when compared to the numerical solutions obtained using
two different approaches. Future work will focus on using these approximate
methods for the non-adiabatic case and for fuels other than solid fuels.
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