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Solving the backward heat equation on the
unit sphere
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Abstract

We consider an inverse problem for the heat equation on the unit
sphere in which the final (current) temperature on the sphere is given,
and the task is to determine the initial temperature. The problem is
ill-posed in the sense of Hadamard; hence, a regularization technique
is applied. We then use a Galerkin method with spherical radial
basis functions to solve the regularized problem. The problem may
have potential applications in atmospheric modelling, when current
temperature data is used to calculate a past global temperature.
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1 Introduction

Backward parabolic equations have applications in hydrologic inversion and
image deblurring. In hydrologic inversion [1], sources of groundwater pollu-
tion are sought by reconstructing the contaminant history. Kovasznay and
Joseph [6] proposed the use of a backward diffusion equation to restore blurred
images. Backward parabolic problems on a spherical domain have potential
applications in atmospheric modelling, when a global temperature from the
past is to be determined by current temperature data. Enting [4] discussed
more examples of inverse problems in atmospheric modelling.

Backward parabolic problems are ill-posed in the sense of Hadamard [5]
(see Section 3). Hence, in practice, regularization techniques are used to
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transform the backward parabolic problem into a well-posed problem which
can be solved. Section 3 discusses how to solve the regularized problem using
spherical radial basis functions.

Let Sn be the unit Euclidean sphere in Rn+1. The backward heat problem
on Sn is: determine u(x, t) in time interval 0 6 t < T which satisfies{

∂
∂t
u(x, t) − ∆∗u(x, t) = 0 , 0 < t < T ,

u(x, T) = f(x) , x ∈ Sn .
(1)

Here, ∆∗ denotes the Laplace–Beltrami operator on the unit sphere. Following
a strategy for a more general parabolic problem proposed by Clark and
Oppenheimer [3], we consider the regularized problem{

∂
∂t
uε(x, t) − ∆∗uε(x, t) = 0 , 0 < t < T ,

uε(x, T) + α(ε)uε(x, 0) = fε(x) , x ∈ Sn .
(2)

Here α(ε) is a regularization term which depends on some given parameter ε
satisfying 0 < ε < 1 , and fε is a perturbed version of f so that ‖fε−f‖L2(Sn) <
Mε with some fixed constant M. Section 4 explains the idea behind the
special choice of the regularization term in equation (2).

By shifting the time variable t, without loss of generality, we determine
the solution at t = 0 only. Section 4.1 converts the regularized problem
at t = 0 into a pseudo-differential equation on Sn. Section 4.2 solves the
pseudo-differential equation with a Galerkin method using spherical radial
basis functions.

2 Preliminaries

2.1 Spherical harmonics

A spherical harmonic is the restriction of a homogeneous harmonic polynomial
in Rn+1 to the unit sphere Sn. The space of spherical harmonics of degree `,
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denoted by H`, has dimension

N(n, 0) = 1 for ` > 1 , and

N(n, `) =
(2`+ n− 1)(`+ n− 2)!

`!(n− 1)!
for ` > 1 .

The space H` has a natural orthonormal basis {Y`,k : 1 6 k 6 N(n, `)} , where
Y`,k is the spherical harmonic of degree ` and order k [7]. Spherical harmonics
with different degrees and different orders are orthogonal with each other, so

〈Y`,k, Y` ′,k ′〉 :=
∫
Sn
Y`,kY`,k ′ dS = δ`,` ′δk,k ′ ,

where dS is the surface measure of Sn and δk,k ′ is the Kronecker delta.
Spherical harmonics are eigenfunctions of the Laplace–Beltrami operator ∆∗
on Sn [7], that is, for ` = 0, 1, 2, . . . and 1 6 k 6 N(n, `) ,

−∆∗Y`,k = λ`Y`,k where λ` = `(`+ n− 1) .

Every function v ∈ L2(Sn) is represented by a generalised Fourier series

v =

∞∑
`=0

N(n,`)∑
k=1

v̂`,kY`,k where v̂`,k = 〈v, Y`,k〉 .

2.2 Positive definite kernels

A continuous function Φ : Sn × Sn → R is called a positive definite kernel [9]
on Sn if it satisfies the two conditions

(i) Φ(x,y) = Φ(y, x) for all x, y ∈ Sn ;

(ii) for any set of distinct scattered points {y1,y2, . . . ,yK} ⊂ Sn , the sym-
metric K× K matrix [Φ(yi,yj)] is positive semi-definite.
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We call Φ strictly positive definite if the matrix [Φ(yi,yj)] is positive definite.

We work with a kernel Φ defined in terms of a univariate function φ :
[−1, 1]→ R by

Φ(x,y) = φ(x · y) for all x,y ∈ Sn , (3)

where x · y denotes the Euclidean scalar product of x and y. Following
Müller [7], let P`(t) denote the Legendre polynomial of degree `, and ex-
pand φ(t) in a Fourier–Legendre series

φ(t) =
1

ωn

∞∑
`=0

N(n, `) φ̂(`)P`(t) , (4)

in which

φ̂(`) = ωn−1

∫ 1
−1

φ(t)P`(t)(1− t
2)(n−2)/2 dt , (5)

where ωn is the surface area of Sn. Using the addition formula for spherical
harmonics [7, p. 10],

N(n,`)∑
k=1

Y`,k(x)Y`,k(y) =
N(n, `)
ωn

P`(x · y) ,

the kernel is

Φ(x,y) =
∞∑
`=0

N(n,`)∑
k=1

φ̂(`)Y`,k(x)Y`,k(y) . (6)

Chen et al. [2] proved that the kernel Φ is strictly positive definite if and only
if φ̂(`) > 0 for all ` > 0 , and φ̂(`) > 0 for infinitely many even values of `
and infinitely many odd values of `; this is also discussed by Schoenberg [9].

We construct a positive definite kernel on Sn by restricting a radial basis
function ϕ in Rn+1 onto Sn. As discussed by Wendland [10], ϕ : Rn+1 → R is a
radial basis function if: (i) ϕ(x) = ρ(‖x‖) for some univariate function ρ; and
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(ii) ϕ is positive definite, that is, for any set of scattered points {x1, . . . , xK} ⊂
Rn+1, the matrix [ϕ(xi − xj)]

K
i,j=1 is positive definite. Wendland [10] provides

more background on radial basis functions. We now define a positive definite
kernel

Φ(x,y) = ϕ(x− y) = ρ(‖x− y‖) = ρ(
√
2− 2x · y) for x,y ∈ Sn .

This means the function φ given in (4) is chosen to be φ(t) = ρ(
√
2− 2t) .

In the numerical experiments, we choose ρ(r) = (1 − r)4+(1 + 4r) , where
(x)+ = x if x > 0 and (x)+ = 0 if x 6 0 .

3 Ill-posedness of the backward heat equation
on Sn

The backward heat problem on the unit sphere is ill-posed (in the sense of
Hadamard [5]), as shown in the following proposition.

Proposition 1. Suppose f satisfies

∞∑
`=0

e2λ`T
N(n,`)∑
k=1

|f̂`,k|
2 <∞ .

Then the problem (1) has the unique solution

u(x, t) =
∞∑
`=0

eλ`(T−t)
N(n,`)∑
k=1

f̂`,kY`,k(x) .

This solution does not depend continuously on the given data f.

Proof: Consider the initial value problem{
∂
∂t
u(x, t) − ∆∗u(x, t) = 0 , 0 < t < T ,

u(x, 0) = v(x) , x ∈ Sn ,
(7)
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where v is some given function. By the method of separation of variables, the
solution to (7) is

u(x, t) =
∞∑
`=0

e−λ`t
N(n,`)∑
k=1

v̂`,kY`,k(x) . (8)

If u is the solution of (1), then u(x, T) = f(x) implies

u(x, T) =
∞∑
`=0

e−λ`T
N(n,`)∑
k=1

v̂`,kY`,k(x) =

∞∑
`=0

N(n,`)∑
k=1

f̂`,kY`,k(x) , (9)

so that v̂`,k = eλ`T f̂`,k . So, it follows from (8) that the solution to (1) is

u(x, t) =
∞∑
`=0

eλ`(T−t)
N(n,`)∑
k=1

f̂`,kY`,k(x) . (10)

To prove that the solution (10) does not depend continuously on the given
data f, let f` = Y`,0/

√
λ` for ` = 1, 2, . . . . From (10), the solution to (1) when

f = f` is

u`(x, t) = eλ`(T−t)
1√
λ`
Y`,0(x) .

It is trivial to see when f = f0 ≡ 0 the solution to the backward heat
problem (1) is u = u0 ≡ 0 . As `→∞ ,

‖f` − f0‖2L2(Sn) =
1

λ`
→ 0 ,

but

‖u`(·, 0) − u0(·, 0)‖2L2(Sn) =
e2λ`T

λ`
→ +∞ .

So the solution does not depend continuously of the data f. ♠
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4 Regularization and approximation

4.1 The regularized problem

Following a regularization technique for parabolic problems proposed by Clark
and Oppenheimer [3], we consider the regularized problem{

∂
∂t
uε(x, t) − ∆∗uε(x, t) = 0 , 0 < t < T ,

uε(x, T) + α(ε)uε(x, 0) = fε(x) , x ∈ Sn .
(11)

Here α(ε) is a regularized parameter depending on some given parameter ε
satisfying 0 < ε < 1 , and fε is a perturbed version of f so that ‖fε−f‖L2(Sn) <
Mε with some fixed constant M. Clark and Oppenheimer [3] showed that
the regularized problem is well-posed.

With the help of (11), we approximate u(x, 0) by uε(x, 0), which is found by
solving a pseudo-differential equation which is derived below. Let

uε(x, 0) =
∞∑
`=0

N(n,`)∑
k=1

v̂ε`,kY`,k(x) .

Then, from (8),

uε(x, t) =
∞∑
`=0

e−λ`t
N(n,`)∑
k=1

v̂ε`,kY`,k(x) ,

implying

uε(x, T) =
∞∑
`=0

e−λ`T
N(n,`)∑
k=1

v̂ε`,kY`,k(x) .

So, from the second equation of (11), by equating the Fourier coefficients, we
obtain

v̂ε`,k[e
−λT + α(ε)] = f̂ε`,k or v̂ε`,k = [e−λT + α(ε)]−1f̂ε`,k .
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Therefore, problem (11) has a unique solution which is given by the series

uε(x, t) =
∞∑
`=0

e−λ`t[α(ε) + e−λ`T ]−1
N(n,`)∑
k=1

f̂ε`,kY`,k(x) . (12)

At t = 0 ,

uε(x, 0) =
∞∑
`=0

[α(ε) + e−λ`T ]−1
N(n,`)∑
k=1

f̂ε`,kY`,k(x) . (13)

So if we define a pseudo-differential operator Lε by

Lεv =

∞∑
`=0

N(n,`)∑
k=1

L̂ε(`)v̂`kY`,k

where L̂ε(`) = α(ε) + e−λ`T , then

Lεuε(x, 0) = fε(x) . (14)

In the next sections we solve (14) numerically using spherical radial basis
functions.

4.2 Galerkin approximation to the regularized problem

Let X = {x1, . . . , xN} be a set of scattered points on the unit sphere and let
Φi = Φ(xi, ·) . We define the finite dimensional space

VX = span{Φi : i = 1, . . . ,N} .

The Galerkin approximation to the regularized problem is: find uεX ∈ VX so
that

〈LεuεX,Φj〉 = 〈fε,Φj〉 for all j = 1, . . . ,N . (15)
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For uεX =
∑N

j=1 cjΦj the coefficients c = {cj : j = 1, . . . ,N} are determined by
solving the linear system

Ac = f . (16)

Here, the elements of vector f are fj = 〈fε,Φj〉 for j = 1, . . . ,N . The entries
of the Galerkin matrix A are

Aij = 〈LεΦj,Φi〉

=

∞∑
`=0

[φ̂(`)]2[e−λ`T + α(ε)]

N(n,`)∑
k=1

Y`,k(xi)Y`,k(xj)

=

∞∑
`=0

[φ̂(`)]2[e−λ`T + α(ε)]
N(n, `)
ωn

P`(xi · xj) .

5 Numerical experiments

We consider the backward heat problem (1) on the two-dimensional sphere S2,
with T = 1 and f chosen so that the exact solution is

u(x, t) =
∞∑
`=1

e−`(`+1)t

`(`+ 1)
P`(x · p) ,

where the P` are the Legendre polynomials and p is the north pole (0, 0, 1).
When t = 0 there is a closed form

u(x, 0) =
∞∑
`=1

1

`(`+ 1)
P`(z) = 1− 2 log

[
1+

√
(1− z)/2

]
, for z = x · p .

In the regularized problem (11) we take

fε(x) =

∞∑
`=1

e−`(`+1) + α(ε)

`(`+ 1)
P`(x · p) , (17)
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Figure 1: Saff–Kuijlaars points (N = 1500) indicated by red dots.

where α(ε) = ε in the first set of experiments and α(ε) = ε1/2 in the second
set. For the Galerkin approximation problem (15) we choose the kernel

Φ(x,y) = ρ
(√

2− 2x · y
)

with ρ(r) = (1− r)4+(1+ 4r) .

Figure 1 shows the set of points X generated using the equal area partitioning
algorithm of Saff and Kuijlaars [8]. Evolution of the temperature distributions
are observed in Figures 2 and 3 where we plot the temperature at time t = 0
(namely u(x, 0)) and at time t = 1 (perturbed with ε = 10−2).
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Figure 2: Exact temperature distribution u(x, 0) at time t = 0 .

We compute the right hand side of (15) using

〈fε,Φj〉 =
∞∑
`=1

e−`(`+1) + α(ε)

`(`+ 1)
φ̂(`)P`(xj · p) .

The one-dimensional integral

φ̂(`) = 2π

∫ 1
−1

φ(t)P`(t)dt ,

is a direct consequence of (4) when n = 2 and the orthogonality of the
Legendre polynomials.
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Figure 3: Temperature distribution fε at time t = 1 perturbed with ε = 10−2 .

The numerical results are summarized in Figures 4 and 5. The discrete `2 errors
are computed using

‖e‖`2 =

(
1

|G|

∑
ξ∈G

|uεX(ξ, 0) − u(ξ, 0)|
2

)1/2
,

where G is a set of 19 000 random scattered points on S2 .

In Figure 4 with ε = 10−2, as the number of Saff–Kuijlaars points N increases,
the approximation errors decrease. In Figure 5 we choose α = ε = 10−5 and
the errors stabilize when N > 400 . The numerical results suggest that when
the parameter α(ε) is too close to zero the problem is close to ill-posedness,
resulting in a poor approximation.



6 Conclusion C275

Figure 4: Approximation of `2 errors using ε = 10−2 .

6 Conclusion

We showed formally that the backward heat problem on the unit sphere is
ill-posed. A regularized strategy is proposed and the problem is converted to a
pseudo-differential equation. A Galerkin approximation scheme to the pseudo-
differential equation using spherical radial basis function was developed.
Convergence analysis of the numerical approach and suitable choices of the
regularized parameter α(ε) are the subjects of a future publication.
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