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Estimating the error of a H'-mixed finite
element solution for the Burgers equation
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Abstract

We compute error estimations for a H'-mixed finite element method
for Burgers equation. By using a H'-mixed finite element method, the
problem is reformulated as a system of first order partial differential
equations, which allows an approximation of the unknown function
and its derivative. Local parabolic and elliptic methods approximate
the true errors from the computed solutions; the so-called a posteriori
error estimates. Numerical experiments show that the error estimations
converge to the true errors.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/9356
gives this article, © Austral. Mathematical Soc. 2016. Published February 17, 2016, as
part of the Proceedings of the 17th Biennial Computational Techniques and Applications
Conference. 1SSN 1446-8735. (Print two pages per sheet of paper.) Copies of this article
must not be made otherwise available on the internet; instead link directly to this URL for
this article.


http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/9356

Contents C384

Contents
1 Introduction C384
2 The H'-mixed finite element method C385

3 A posteriori error estimates and implementation issues C390

4 Numerical results C394
5 Conclusion C396
References C396

1 Introduction

We consider the Burgers equation
Oru(x,t) — vou(x, t) + u(x, t)o,u(x,t) =0, xe€Q, te(0,T], (1)
with boundary and initial conditions

u(0,t) =u(1,t) =0, tel0,T], (2)
u(x,0) =uw(x), xe€Q, (3)

where 0, := 0/0t, 0 1= 0/0%, Oy, := 0%/0%*, T and v (viscosity coefficient)
are positive constants and Q := (0,1) [2].

The aim is to design methods to compute a posteriori error estimations
when the solution of (1)—(3) is approximated by a H'-mixed finite element
method (H'-MFEM).

Using the H'-MFEM, the problem is reformulated as a system of first order
partial differential equations, which allows an approximation for u and its
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derivative 0,u. The H'-MFEM considered in this article is based on an
approach suggested by Pani for nonlinear parabolic equations [3|. Pany et
al. [4] adapted the method to Burgers equation. Section 2 gives details of
this H'-MFEM.

The method considered in this article is closely related to least squares mixed
finite element methods in that the second order partial differential equation
is reformulated as a system of first order partial differential equations with a
new unknown defined as the flux [7, 8, 9, 10, and references therein].

A posteriori error estimates are a fundamental component in the design of
efficient adaptive algorithms for solving partial differential equations. In this
study we consider an implicit type of a posteriori error estimation which is
based on the procedure developed by Adjerid et al. [1] for one dimensional
parabolic systems. This a posteriori error estimation with finite element
methods of lines was studied for one dimensional nonlinear parabolic system
and the Sobolev equation |5, 6]. For the approximation of the solution we use a
mixed formulation of finite element methods of lines with an a posteriori error
estimation computed using the procedure developed by Adjerid et al. [1]. To
the best of our knowledge, this is the first time this a posteriori error estimation
method is considered for the Burgers equation, where the approximate solution
is computed using H'-MFEM.

2 The H'-mixed finite element method

Throughout this article, (-,-) and ||-||;0(q, denote the inner product and norm

in H°(Q) = L?(Q), respectively. As usual, the Sobolev space H'(Q) consists
of functions u for which

2 2
Iullvr i) = 3/ el + 195t oy

exists. The space H{(Q) contains all functions in H'(Q) with zero trace at
the endpoints of the domain Q, namely at x =0, 1. For any p € [0, o0] and
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any normed vector space X, LP(X) is the space LP(0, T;X) of all functions
defined in [0, T] with values in X. The norm in this space [|-[|;x, is defined

as usual. We write LP(L*®) and LP(H') instead of LP(L*°(Q)) and LP(H'(Q)),
respectively.

By H'-MFEM, (1) is reduced to a system of first order equations using a new
variable defined as v = u, . As a consequence, (1) is reformulated as

hu=v, (4)

ou— vo,v+uv =0. (5)

We multiply (4) by 9,x and (5) by —0,w, where x € H}(Q) and w € H'(Q)

are arbitrary test functions. Then, using integration by parts and applying

the boundary conditions (2), we obtain a weak formulation of (1)—-(3): given
uy € HY(Q), find (w,v) : [0,T] — H}(Q) x H'(Q) satisfying, for t >0,

(0xu(t), 0:x) = (v(t), 0x) for all x € Hy(Q), (6)

(Ov(t), W) + v (0v(t), d,w) = (u(t)v(t),d,w) for allw e H'(Q), (7)

and, for t =0,
(v(0),w) = (d,up,w) for allw € H'(Q). (8)

Remark 1. Existence and uniqueness of the solution of (6)—(8) can be shown
using the method of compactness [12, 11]. We will present this result in a
future paper.

Remark 2. If w e W!_(0, T;HY(Q))NL®(0, T; HA(Q)) and (u,v) satisfies (6)—
(7) then (u,v) satisfies (4)—(5). Indeed, by using integration by parts we
deduce from (6) that 0y(v — 0,u) = 0 which implies

v(x,t) = ou(x, t) + g(t), 9)

for some function g depending on t. Integrating (9) over Q, noting (8), we
infer g(0) = 0. Also, it follows from (9) and (7) (with w = 1) that

J [0uu+g'(t)] dx =0, (10)
Q
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implying g’(t) = 0. Hence g = 0, that is (u, v) satisfies (4). This immediately
gives (5).

Solutions to (6)—(8) are approximated using a high order finite element method
defined as follows. We first partition the interval Q into 0 =x; <x, < --- <
XNn41 = 1, and define hy :=x;7 —x  for L=1,...,N and h := max; h;. The
hat function on (x;_1,x147) for L=2,..., N is defined as

(x =x1—1)/hu—r, x € [xi1,x1),
Pri(x) = a1 —x)/hu,  x € [x,xi41)
0, otherwise.

At the endpoints of Q (namely, at x =0, 1) we define

0, otherwise,

r1(x) = {(Xz—X)/h1, x € [x1,%2),

(x —xn)/hn, X € [Xn, XNt )

0, otherwise.

¢N+1,1 (x) = {

The space of piecewise linear functions on Q) and its subspace consisting of
functions vanishing at the endpoints of () are, respectively,

St = span{dr 1, &1 ..., dnsia) and Sy = span{da, ..., bk

The spaces of bubble functions in Q are defined by 8 := span{d1x, ..., dnil},
where ¢ is an antiderivative of the Legendre polynomial Py_; of degree k—1
scaled to the subinterval [x;,x;,1]. More precisely, for 1 = 1,... N and
k=2,3,..., we define

fun(x) = {quk—n/m] [Pl dy, x€lxa), )

0, otherwise.
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Forp,q € Nand p, q > 2, the finite dimensional subspaces of H'(Q) and H}(Q)

are, respectively,

q P
Vi=8,U) Sk and V=8 U) 8}
k=2 k=2

A semidiscrete approximation to (6)—(8) is to find (U, V) : [0, T] — Vﬁ x Vi
such that for t € (0, T]:
(UL), 3.xn) = (V(£), dxw),  for all xu € V], (12)
(0:V(t), wn) + v (0, V(t), 0,wn) = (UV(t), 0xwn), for all wy, € Vi, (13)
and

<V(O),Wh> = (axuo,wh) for all Wy € Vﬂ . (14)

Let the errors in the approximation of (6)—(8) by (12)—(14) be e(x,t) :=
u(x,t) — U(x, t) and f(x,t) :=v(x,t) — V(x,t). This leads to Proposition 3,
the proof of which will be presented in a future paper.

Proposition 3. Assume that u, 0w € L®(H)(Q) NHPH(Q)) and v, dyv €
L®(HI*1(Q)). Assume further that U € L°°(\O7E) and V € L=®(V}). Then,
there exist positive constant C > 0 independent of h such that

le(®)l; < CRm 50 [l ) + [Vl imgeasr) + 100z gaaer) |

IOl < CR P10 Tl Ve o + 100z grarny |-

Now we show the computation of (U, V). With ¢, defined by (11), the
solutions to (12)—(14) are

N p
Z U (i) + Y > Ut dri(x) (15)

N+1

N ¢
Z Vi (t) i (x) + Z Z Vi(t) P (x) . (16)
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Let

o = (De br) . o = (e 0bri) s By = (Pui, Ixdrgr) -
(17)
Foreach L =1,...,N and r,v" = 2,3,... we define a 2 x 2 matrix M%J, a
2 x (r — 1) matrix M1 and an (r—1) x (v —1) matrix M; , with entries

1,m
1 1Hj—1,14i—1 ——
[M],]] _(X]] I laJ_]aza
1 (REEE . .
My = o, i=12,3=2,...r
1 L s s /
[Mr,r/]ij—“j,ia i=2,...r,j=2,...,7".

Similarly, we define matrices S} ;, S}, S}, with ocrr7 and B}, B}, B}

with L’}r’. We then define

M} m! St S}
M], — ],] ],T‘ Sl — ],] ],T‘

' [(M%,T)T ML [T (sE) sk

B! B!
1 _ 1,1 1,v/
BT e [(B%,T)T BL v/

The matrices M! and S! have size (r+1) x (r+1), whereas the matrix B! .+ has
size (r+1) x (r'+1). The global matrices M,, S, and B, have elements M!,
S! and B! > respectively. The sizes of M, and S, are (Nr+1) x (Nr—+1)

and the size of By, is (NT+ 1) x (Nr/ +1).

For each 1 =1,... N we also define vectors
U' = Uy, U g, U, W)™ and - VE= [Vig, Vi, Vi, Vil

where the elements are defined in (15)—(16) and Uy ; and Un411 are zero.
The vectors U and V are of size (Np+1) x 1 and (Nq+ 1) x 1, respectively,
and are assembled from the vectors U' and V.
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With the matrices defined above, the matrix representation of (12)—(13) is

S,U(t) =By VI(t), (18)
M 0. V(t) +vS,V(t) = GIU(t), V(). (19)
Here,
G(U,V)=[GY g1, .. g™

is an (Nq+ 1) x 1 vector with
G(O) == [<UV7 ¢)1,1> y <UV7 ¢)2,1> B <uv7 ¢N+1,1 >]T

and

G(U — [<UV’ (l)172> , <UV7 (1)[73> ce <UV7 d)l,q>]T

for 1=1,...,N. We use the Matlab ODE solver to solve (18)-(19). The right
hand side of (19) is computed by first solving (18) for a given V(t).

3 A posteriori error estimates and
implementation issues

In this section we design methods to compute the error estimates. We infer
that e and f satisfy

(dce, dyxn) = (f,dxxn) for all xp, € VP, (20)
<6tf, Wh> + v (E)Xf, aXWh> — <€f, aXWh> — <Uf, aXWh> — <€V, aXWh>
= —v (0,V,0,wp) 4+ (UV, dowp) — (3, V,wy)  for allwy, € V3. (21)

At t =0, from (8) and (14),

<f,Wh> =0 forallw, e Vﬁ .
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Due to (13), the right hand side of (21) vanishes. However, for the purpose of
developing a posteriori error estimates, we keep these terms in the equation.
We approximate the exact errors e and f, respectively, by

() brpi(x) € 8P,

(bl q+1 E 8q+]

<= LE
<= LR

which are computed locally on each element (xq,x;1), for L=1,... N, from
the approximate solutions (U, V).

An accurate error estimation is one that satisfies

}1}1}1{1)@(’() =1, tel0,T], (22)
where ﬁ( |
t
O(t) := )
with

e(t) == llelur ) + I lni ) - E(t) = IEW) I ) + IF(E) i )

We propose four different methods to compute E; and Fi, 1=1,... . N. The
first equation to be solved for each method is:

1. Nonlinear parabolic error estimate: (cf. (21))
<atFl, ¢l,q+1>1 +v <axFla axd)l,q+1>1 - <E1F17 ax¢l,q+1>1 - <UF1, ax¢l,q+1>1

- <VF—17 ax¢l,q+1>1
=V <axva ax¢t,q+1>1 + <U.V7 ax¢L,q+1>1 - <atva d)l,q+1>1 :
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2. Nonlinear elliptic error estimate: We neglect the time rate of change in
Method 1 so that

v (0xFr, 0xbrgi1); — (EiF, Oxbrgr1), — (UFL, 0xdr 1)y — (VEL 0xbrge1),
=V <aXV7 ax¢l,q+1>1 + <UV> axd)l,q+1>1 - <atV7 d)l,q+1>1 .

3. Linear parabolic error estimate: An additional reduction in the compu-
tation cost is obtained by neglecting the nonlinear term (E(Fi, 0x®1 1),

in Method 1:
(0tF1, drge1)y + Vv (OxF1, 0xDrgr1)y — (UF, 0xrg1); — (VEL OxPrge1)y
= =V (0xV, 0xPrgs1) + (UV, 0xDrgr1); — (0t V, Drge1)y - (23)

4. Linear elliptic error estimate: We neglect the nonlinear term in Method 2
so that

v (0xF, 0xbrgi1); — (UF, 0xbrgr1), — (VEL O0xPrgi1)y
=V <aXV7 ax¢l,q+1>1 + <UV, ax¢l,q+1>1 - <atv7 ¢l,q+1>l .

Each equation in Methods 1-4 is coupled with (cf. (20))

<6XE1, ax(bl,p+1>1 = <F1.7 axd)l,p+1>1 ) (24)
and an initial condition (Fi, g1 q41) = (Oxto, Grqr1) — (V. brqs1) -

We finish this section with a discussion on implementation issues for the linear
parabolic case. From (17), we have

q
~1+1,1 —1,1 L
<axva axd)l,q+1>1 = Vl+l,1(x1,q+1 + E Vl,k’o‘k/,q_H = T1 ;

k=1
and

q
1+1,1 Ll .
(0LV, brg+1), = 0cVigni0q o1y + E 0Vikogsqpq = Ta.

k=1
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Also
O‘;:L],qu = hl/((zp + 3)(2]9 —-1)), &;LLTJH =2/h,

and

1/V/(2q9+3)2q+1), p=q+1,
Brirqr =< —1/V/2q+1)2q=1), p=q-—1,

0, otherwise.

By defining
kk, = (rPris Oxdrgar) B};k/ﬂ = (1 cPrirs Oxbrgs)

and
\

Brig = (G i®reni, 0xdige)

we have

P
(UF1, 0xPrga)y = Fu [Uir 1Bl gi1q + Z ul,kBlk,qu],q] = T3k,
s

q
(VEL, 0xdrq+1), = Ei [ Vigas B%,pﬂ,q + Z VL,kIBL,HLqI = T,Ey,

k/=1
and
A q e
(UV, 0xd1g1) = U1 [ Viga, B%,],q + Z vl,k’B%,k’,qu]
K/=1
—|— Zulk V1+1 1Bk1 .q —|— Z Vlk’ﬁkk/ ] = T5.
K/=1

l .
The values of [Skk, Frrg 0 nd Bkk/ can be computed using Maple.
By using the above definitions of Ty, ..., Ts, (23) is rewritten as

hl 2v

(29 +3)(29 1)

hy

dRu(t) + (— - T3) Rt) — TE() = —vTy 4 Ts —

C393

1.
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Moreover, (24) is rewritten as
2E1(t) = By g e FL(L)

Then, by using the backward Euler formulation, we compute F(t;) recursively
using

2v h
(d + h T3 — T4B;}H,q+1?l> R(t) =T+ T =T +dh(ti), (25)

where d = hy/(2q+3)(29—1)(tj —tj—1) and t; = jAt for j =1,2,3,.... The
time step At is chosen to be not less than h.

4 Numerical results

In this section, we present the numerical results obtained when solving (1)—(3)
whose exact solutions are

2vm?acos(mx)  2v[masin(mx)]?
2+ acos(mx)  [2+ acos(mx)]?

_ 2vmasin(7mx)
- 2+ acos(mx)’

u(x, t) v(x,t) =

I

where a = exp(—mn*vt) . The initial value is
Uo(x) = 2vrsin(7x) /(2 + cos(mx)) .

In the following, we choose v = 0.05 and p = q + 1. The numerical results
are also satisfactory for a larger v, such as v = 0.5. We present the numerical
results for v =0.05 only.

In the numerical experiment, we computed the approximate solution (U, V)
by solving (18)—(19). We then computed the errors e and f to check on the
convergence rate given by Proposition 3. Finally, we computed the error
estimations E and F by using the linear parabolic and linear elliptic a posteriori
error estimate methods 3 and 4 introduced in Section 3.



4  Numerical results

Table 1:
P q

Ku

[fn(t) o (q)

The orders of convergence for (u,v) at t =0.8.
N len(t) |11 (0

Ky

2 1] 2
40
80

160

1.1338E-3
2.8487E-4
7.1305E-5
1.7831E-5

1.993
1.998
1.999

6.6472E-2
3.3245E-2
1.6624E-2
8.3120E-3

0.999
1.000
1.000

20
40
80
100

2.2153E-5
2.7675E-6
3.4587E-7
1.7708E-7

3.000
3.000
3.000

2.8620E-3
7.1684E-4
1.7929E-4
1.1476E-4

1.997
1.999
1.999

Table 2: The effectivity indexes @ at t = 0.8.
Method 3

h

e(t)

E(t)

O(t)

Method 4

E(t)

o(t)

[\S]ipe]
— (0

1/20
1/40
1/80

1/160

6.7606E-2
3.3530E-2
1.6695E-2
8.3298E-3

6.6984E-2
3.3364E-2
1.6652E-2
8.3188E-3

0.991
0.995
0.997
0.999

6.6543E-2
3.3308E-2
1.6645E-2
8.3180E-3

0.984
0.993
0.997
0.999

1/20
1/40
1/80

1/100

2.8841E-3
7.1961E-4
1.7964E-4
1.1493E-4

2.8736E-3
7.1833E-4
1.7948E-4
1.1485E-4

0.996
0.998
0.999
0.999

2.8671E-3
71792E-4
1.7946E-4
1.1484E-4

0.994
0.998
0.999
0.999

C395

Table 1 presents the exact errors |[e(t)[[ 41 (o) and [[f(t)[|;1(q) for t =0.8. As
predicted by Proposition 3, the convergence rate is [|e(t)||1 o) = O(hP) and

fB) (o) = O(hP~1). Table 2 presents the computed a posteriori error

estimate £ and the effectivity index ©(t), at t = 0.8. For Method 3, when
solving (25) we chose At = 0.4. The results show that our a posteriori error
estimations are efficient.
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5 Conclusion

We designed algorithms to estimate the true error when a model problem is
solved using H'-MFEM. Our numerical experiments support our theoretical
claims in Proposition 3 and (22). We emphasise that the computation of the
error estimations (Ey, F) for L = 1,..., N can be carried out in parallel on
each element (xi,%111). A theoretical study to show limy_,0©(t) = 1 is the
subject of a future paper.
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