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Abstract

Dynamical and thermodynamical subgrid-scale parameterisations
of eddy drain, net dissipation and stochastic backscatter are calculated
for a multi-level primitive equation atmospheric general circulation
model. The parameterisations have only moderate variability with
height and a cusp behaviour with peaks near the largest retained
wavenumber. Vertically integrated net dissipation functions for vorticity
and temperature are very similar to corresponding results for barotropic
simulations while the divergence dissipation is nearly four times stronger.
Atmospheric general circulation model simulations with the new subgrid
model improve kinetic energy spectra and zonal flows compared with
control simulations.
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1 Introduction

Since the first climate simulations with atmospheric general circulation mod-
els (agcms) it was found that parameterisations of subgrid-scale processes
strongly influence the accuracy of the large-scale flows and energy spectra [5].
As reviewed by Frederiksen et al. [4], in recent years there has been consider-
able progress in solving this long standing problem using systematic and self
consistent closure, and stochastic modelling approaches. For both atmospheric
and oceanic flows described by quasi-geostrophic equations, universal scaling
laws for the subgrid eddy dissipation were derived [7] and the stochastic
modelling approach was also successfully applied to three-dimensional turbu-
lence in boundary layer channel flows [8]. The aim of this article is to apply
the method of Frederiksen and Kepert [3] to determine parameterisations
of subgrid eddy-eddy interactions for the more complex primitive equation
atmospheric models. Section 2 summarises the spectral primitive equations
for atmospheric flows. The stochastic modelling technique for determining



2 Primitive equation spectral model C85

subgrid-scale parameterisations is summarised in Section 3. Eddy dissipa-
tion and stochastic backscatter terms are calculated in Section 4. Vertically
averaged subgrid terms are also described in Section 4 and are applied to
the primitive equation agcm in Section 5. Comparisions of the results with
observations and control simulations with a standard heuristic eddy diffusion
model are also presented in Section 5.

2 Primitive equation spectral model

The simulations and studies in this article were performed with the csiro
9-level agcm [9]. It is a sigma coordinate model where σ = p/ps, p is the
pressure and ps is the the surface pressure. The prognostic variables are
surface pressure weighted: ζ = psξ , T = psT , D = psD , and ps. Here,
ξ is vorticity, T is temperature and D is divergence. These variables are
expanded in terms of spherical harmonics and the spectral coefficients satisfy
the thermodynamical equations
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Here m is the zonal wavenumber, n the total wavenumber, D•0 are the
specified (bare) dissipation-dispersion functions, f•mn are the dynamical and
thermodynamical forcings and N•mn are nonlinear terms. Also, T eqmn = [T̄ +

σ∂T̄
∂σ

−T0]psmn where T̄ is the global mean σ-level temperature and T0 = 290K.
The nonlinear terms are quadratic in the prognostic variables. We define
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where a = 1, . . . , 28 and j = 1, . . . , 9 is the σ-level. That is, a = j for q = ζ ,
a = 9 + j for q = D , a = 18 + j for q = T , and a = 28 for q = ps . Then
the nonlinear terms are

Na
k =

∑
p

∑
q

Kabc(k,p,q)qb−p(t)q
c
−q(t) , (2)

where the summation is implied over repeated superscripts [1] and are over
the triangular truncation set

T (T) = {p,q | −T 6 mp 6 T , |mp| 6 p 6 T ,−T 6 mq 6 T , |mq| 6 q 6 T }.
(3)

Also, Kabc are interaction coefficients between the nonlinear terms in equa-
tion (2).

3 Stochastic modelling technique

We now consider the subgrid model required to compensate for reducing the
resolution from that of the benchmark simulation equation (3) to a large eddy
simulation (les) with resolution R = T (TR) . Here TR is the les truncation
wavenumber and T > TR . The subgrid wavenumber set is defined as S = T−R .
We employ the stochastic modelling approach described by Frederiksen and
Kepert [3] to formulate the subgrid model. Let q denote the column vector
with components qamn ≡ qak where a runs over the 28 field variables. Then
the prognostic equation (1) is

qt(t) = qR
t (t) + qS

t (t) = qR
t (t) + f+ q̂S

t (t) , (4)

where qR
t (t) is the tendency of the retained scales, and qS

t (t) is the subgrid
tendency consisting of the time averaged component f = qt

S(t) and the
fluctuating component q̂S

t(t). In the current study where baroclinic instability
is resolved in the les, f ≈ 0 .
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The fluctuating component of the subgrid tendency is

q̂S
t(t) = −Dd q̂(t) + f̂(t) , (5)

where Dd is the subgrid drain dissipation matrix, q̂ is the fluctuating com-
ponent of q, and f̂ is a random forcing vector. A generalisation of Gauss’
theorem of least squares [3, 7] then yields

Dd = −

〈∫ t
t0

q̂S
t(s)q̂

†
(t0)ds

〉 〈∫ t
t0

q̂(s)q̂
†
(t0)ds

〉−1

, (6)

where † denotes the Hermitian conjugate. With Dd determined by equa-
tion (6), the Lyapunov or balance equation

〈q̂S
t(t)q̂

†
(t)〉+ 〈q̂(t)q̂S†

t(t)〉 = −Dd〈q̂(t)q̂†(t)〉− 〈q̂(t)q̂†(t)〉D†d + Fb , (7)

specifies the covariance of the random forcing Fb = Fb + F
†
b where Fb =

〈̂f(t)q̂†(t)〉 . We also define backscatter and net dissipation operators by
Db = −Fb〈q̂(t)q̂†(t)〉−1 and Dn = Dd +Db , respectively, and corresponding
eddy viscosities by ν• = D•/n(n+ 1) .

4 Primitive equation subgrid model

We use the techniques of Section 3 to calculate stochastic and deterministic
subgrid scale parameterisation based on simulations of the primitive equation
agcm described in Section 2. For this simulation we employ the simple
relaxation physics forcing described by Held and Suarez [6]. We are interested
in obtaining generally applicable subgrid models that can be used over the
seasonal cycle. The diffusion function employed in this simulation is based
on the barotropic subgrid model studies of Frederiksen and Davies [2] and
Frederiksen and Kepert [3].

Figure 3(d) of Frederiksen and Kepert [3] shows the isotropised net dissipation
function required to make barotropic les at T31 (TR = 31) have the same
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Figure 1: Net eddy dissipation function g(n/n∗) for the relaxation physics
model.
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resolved scale spectra as the higher T63 (T = 63) resolution benchmark direct
numerical simulation (dns). This same net dissipation function g(n/n∗) is
shown in Figure 1, scaled to a peak of unity and as a function of scaled
wavenumber (n/n∗) where n∗ is the maximum resolution. The cusp shape
near the maximum wavenumber is a general characteristic of net dissipation
functions. We now examine the performance of the model when employed for
n∗ = 63 . The net dissipation and diffusion coefficients are

D•0(n,σ) = ν
•
0n∗(n∗ + 1)g(n/n∗) . (8)

Here • ∈ [ζ,D, T ,p] and νζ0a
2
e = 2.46 × 105m2s−1 where ae is the earth’s
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Figure 2: Monthly averaged kinetic energy spectra e(n) (m2s−2) for the
relaxation physics model.

n
-3

radius (6.371 × 106m). We use νT0 = νζ0 and νD0 = 4νζ0 . We also define
g+(n/n∗) = g(n/n∗) when g is positive but g+ is zero when g is negative.
We examine the performance of both functions in Section 5 but for the
simulations in this section we replace g by g+.

A long spin up run of the model was performed and the kinetic energy spectra
and circulation features, particularly zonal winds, were examined. Figure 2
shows the vertically integrated kinetic energy spectrum averaged over the
last three months of the simulation. The total wavenumber spectrum has an
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Figure 3: Monthly and zonally average zonal wind cross-sections as functions
of latitude and pressure for (a) agcm with relaxation physics, (b) January
observations, (c) January agcm control run, (d) January agcm S10 run with
new subgrid model.
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approximate n−3 inertial range between n = 15 and n = 40 , and then falls
off slightly faster towards the largest wavenumbers. Figure 3(a) shows the
structure of the zonal wind, averaged over the last month of simulation; peak
jet streams occur in the upper troposphere of both hemispheres centred near
45N and 45S. The zonal winds are more characteristic of the annual average
flow than those for a particular month, such as the January observations in
Figure 3(b).

Next, we apply the stochastic modelling approach of Section 3 to derive
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stochastic and deterministic net parameterisations of subgrid eddy-eddy
interactions when the model resolution is reduced from T63 to T31. We
employ the methodology of Section 3 for each variable at a given level and
wave number pair (m,n) using a time interval of four days in equation (6). We
then average over the zonal wave number m to obtain isotropised coefficients.
Figures 4 and 5 show the resulting nondimensional drain, backscatter and
net dissipation functions for the vorticity as well as the net divergence,
temperature and surface pressure dissipation functions. We use ae (earth’s
radius) and Ω−1 (inverse of earth’s angular velocity) as length and time scales.
The drain and particularly backscatter dissipation functions for vorticity
are essentially equivalent barotropic (uniform in the vertical σ direction)
with a cusp behaviour maximising near the largest retained wave number
n = 31 . The net dissipation for vorticity varies somewhat more with height,
with maxima near the surface and 300 hPa. This is also seen for the net
temperature diffusion while the net divergence dissipation maximum occurs
near the surface and at the highest retained wavenumber n = 31 . The net
dissipation for the surface pressure has a qualitatively similar structure to
the barotropic function g(n/n∗) but with smaller negative contribution.

The vertical average of the net dissipation function for vorticity (Figure 4(c))
is very similar to g in Figure 1 and it has a peak nondimensional value ≈ 0.1
(not shown). That is, in both structure and strength it is essentially the same
as the barotropic curve Figure 3(d) of Frederiksen and Kepert [3]. Similarly,
the vertical average of the net dissipation or diffusion function for temperature
closely follows the cusp behaviour of g with a peak nondimensional value
of ≈ 0.08 (not shown) but like g+ has no negative contribution.

The vertical average of the net dissipation function for divergence (not shown)
is cusped at the truncation wavenumber n∗ = 31 but without the negative
contribution of the vorticity diffusion function. At the peak its value is
≈ 0.35 in nondimensional units, or nearly four times that of the vorticity and
temperature diffusion functions. Thus, choosing νD0 = 4νζ0 in equation (8) and
κD0 = 4κζ0 in equation (9) below is broadly consistent with our calculations
based on the stochastic modelling approach.
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Figure 4: Primitive equation model based nondimensional subgrid-scale
parameterisations. Shown are (a) drain dissipation, (b) backscatter dissipation
and (c) net dissipation for vorticity, (d) net dissipation for divergence.
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Figure 5: Primitive equation model based nondimensional subgrid-scale
parameterisations. Shown are (a) net dissipation for temperature as function
of σ level and total wavenumber n and (b) net dissipation for surface pressure
as function of n.

(a) (b)

n
et

 d
is

si
p

at
io

n

-0.02

       0

0.02

0.04

0.06

0.08

       0.10

 0.12

 0.16

 0.14

n
1 2 3 4 5 10 20 30

In summary, in broad terms, the dissipation functions g or g+, scaled as
discussed above, represent the effect of subgrid scale eddies on the vorticity,
divergence and the temperature at the retained scales.

5 AGCM simulations with subgrid model

For the simulations described in this section, we again use the primitive
equation csiro agcm detailed by McGregor et al. [9]. However, instead
of the simplified relaxation physics employed in Section 4, the simulations
are performed with a comprehensive set of dynamical and thermodynamical
processes. The agcm includes radiation and precipitation, snow, sea-ice and
cloud amounts that are determined through prognostic equations, and with
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variability from diurnal to seasonal time scales. An interactive land-surface
scheme is used and sea-surface temperatures are prescribed monthly and
interpolated in time. The vertical coordinate is the σ coordinate described in
Section 2 where the generic form of the spectral equations are also outlined
for the 9-level model. Again, the horizontal resolution corresponds to trian-
gular T63 truncation. The model is integrated with a semi-implicit leap-frog
scheme and employs an Asselin time filter and time steps varying between
4 and 15 minutes.

Dissipation is included as shown in equation (1) and the standard formula-
tion [10] used in the control simulation is specified by the heuristic form

D•0(n,σ) = κ
•
0n(n+ 1)∆(n) , (9)

where ∆(n) is unity if 60 6 n 6 63 and otherwise is zero. Also, κT0 = κ
ζ
0 and

κD0 = 4κζ0 for numerical stability in the stratosphere. The standard diffusion
parameterisation for the control simulation also uses κζ0a

2
e = 6.25× 104m2s−1.

The agcm was integrated for 50 years with climatological sea surface temper-
atures to reach its converged climate state and the control state was specified
by a further 10 year integration from which the average flow properties and
kinetic energy spectra were determined for each month of the annual cycle.

Perhaps the clearest indication of a problem with the control simulation using
the heuristic standard diffusion parameterisation is seen from the kinetic
energy spectra (vertically integrated over the σ levels) shown in Figure 6.
This depicts the January total wavenumber kinetic energy spectrum e(n)
in m2s−2 and the spectrum ± standard deviation for the control agcm
simulation averaged over 10 years. Figure 6 shows that the control simulation
underestimates the kinetic energy at wavenumbers between 4 and 25 compared
with the observed spectrum for January 1979. On the other hand, at small
scales the kinetic energy is too large compared with observations and does
not follow the n−3 inertial range power law.

The discrepancies seen in the kinetic energy spectra in Figure 6 with the
standard heuristic diffusion parameterisation are reflected in the flow fields
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Figure 6: Kinetic energy spectra e(n) (m2s−2) for control agcm simula-
tion for January (thick solid) and e(n) ± standard deviation for control
simulation (dashed). Also shown are e(n) for January 1979 (thin solid).
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and particularly in the simulations of the zonal winds shown in Figure 3(c).
Here the zonal winds averaged over 10 years for January are compared with
reanalyses, in Figure 3(b), based on the European Center for Medium Weather
Forecasting (ecmwf) dataset for 1985–1992. While the main feature of the
circulation are reproduced by the control simulation, the jetstream maxima
are underestimated and the northern hemisphere stratospheric jet is too
weak. We find similar deficiencies with the control simulations compared with
reanalysed observations in other months (not shown).

As noted in Section 4, the vertically integrated dissipation functions based on
the primitive equations correspond closely to g(n/n∗), or g+(n/n∗), since
the magnitude of the negative contribution is quite small or non existent for
divergence and temperature. We employ the dissipation representation given
in equation (8) with νζ0a

2
e = S × 4.92 × 104m2s−1 for S = 1, 5, 10 using the

dissipation function g+ (denoted runs S1, S5 and S10) and for S = 5 with
dissipation function g (denoted run N5). A scaling factor of S = 1 at T31
corresponds to the calculated eddy viscosity strength for barotropic flow at
500 hPa [3]. At 300 hPa a scaling factor of S ≈ 5 at T63 would appear to be
most appropriate although we find that S = 10 better compensates for the
weaker zonal winds in the control simulation Figure 3(c).

The vertically integrated total wavenumber kinetic energy spectra e(n)
in m2s−2 are shown in Figure 7 for January for the S1,S5,S10 and N5 runs.
The results are averaged over ten Januaries. Also shown is the observed
spectrum for January 1979 and we see that the S5 and S10 spectra closely
agree with the observations at most scales. The N5 spectrum also closely
follows the January observed spectrum at large scales with wavenumbers
less than 25 but with some over estimation at higher wavenumbers. The
S1 spectrum has too weak dissipation at T63 at the end of the spectrum
and there is an underestimation of kinetic energy at intermediate scales, as
expected [5]. In other months the S5 and S10 runs also have spectra with
the correct n−3 inertial ranges (not shown).

Figure 3(d) shows the January zonal winds averaged over 10 years for
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Figure 7: Kinetic energy spectra e(n)m2s−2 for S1 run (thick short
dashed), N5 run (thin long dashed), S5× 10−1 (thin short dashed) and S10
run ×10−1 (thick solid) all for January. Also shown are e(n) for January
1979 (thin solid).
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the S10 run. The peak zonal winds for the Northern Hemisphere tropo-
spheric jet core are around 5ms−1 stronger than in the control run with the
standard diffusion parameterisation equation (9) and in better agreement with
the observations (Figure 3(b)). Similarly, in the Southern Hemisphere the tro-
pospheric jet core is also more equatorward and strengthened by nearly 5ms−1

compared with the control. The zonal wind simulation in the S5 and N5 runs
are very similar both for January and for the other months (not shown).
Again, the differences between S10 and the control and S5 and the control
are quite similar but the magnitudes are larger in the S10 case. This suggests
that the stronger diffusion may be compensating for other agcm deficiencies.

6 Conclusions

Dynamical and thermodynamical subgrid-scale parameterisations that rep-
resent the effects of unresolved eddies on the resolved scales of vorticity,
divergence, temperature and surface pressure, were calculated from simula-
tions with a nine-level primitive equation model. The stochastic modelling
method of Frederiksen and Kepert [3] was employed in simulations of typical
atmospheric flows. The drain dissipation, backscatter dissipation and net dis-
sipation functions were calculated for each of the dynamical fields as functions
of level and total wavenumber. When vertically integrated, the net dissipation
functions have very similar structures and magnitudes to the barotropic case
with a cusp near the largest wavenumbers. However, the strength of the
divergence dissipation is around four times stronger than for the other fields.
The vertically integrated eddy dissipation and diffusion parameterisations
were applied to the same agcm including comprehensive physical processes.
Compared with the control simulation, using heuristic diffusion functions, the
simulations with our derived parameterisations improve the kinetic energy
spectra and the zonal wind strength by as much as 5ms−1.
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