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Transition of a partially yielded Casson fluid
from circular to helical flow
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Abstract

In the Casson model, a fluid behaves as a solid for low stress but
yields to flow as a viscoplastic fluid as the stress increases beyond a
yield stress. The Casson model is often used to model the flow of
blood or the flows occurring in food processing. We analyze the flow
of a Casson fluid between infinitely long coaxial cylinders, with the
inner cylinder rotating and the outer cylinder stationary, so that only
the fluid adjacent to the inner cylinder yields. Simultaneously, axial
flow arising from a small axial pressure gradient causes the flow to
transform from a circular to a helical flow. Such flow is relevant to a
number of applications, particularly rheometry. A perturbation analysis
based on the pressure gradient provides explicit approximations for
the fluid velocity profiles, as well as the change in location of the
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solid-fluid boundary. These approximations show the dependence of
flow quantities on a range of fluid parameters, not just for specific
parameter values, as occurs when numerical calculations are used.
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1 Introduction

Yield stress fluids behave like solids for lower values of the total fluid stress,
but when this stress exceeds a given value, the yield stress, the solid yields
to flow as a (generally, non-Newtonian) fluid. Such fluids are encountered
in many medical and industrial applications [1, 4]. Flows of such fluids
may contain solid and fluid regions, separated by yield boundaries or freeze
boundaries, where the stress has the yield value.

The simplest example of a yield stress fluid is the Bingham fluid [3, e.g.],
which flows as a Newtonian fluid beyond yield and was used to model the
flow of paints [2]. Another example is the Casson fluid, which flows as a
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shear-thinning non-Newtonian fluid beyond yield and was used to model
the flow of blood [4]. There are many other examples of yield stress fluids
displaying a wide variety of characteristics, as discussed by Bird et al. [3,
Chap. 4] and Tanner [11, Chap. 1].

The geometry of the flow of a yield stress fluid determines its flow character-
istics; in particular, the existence and location of any yield zones and yield
boundaries. Among many geometries, one of interest occurs in fluid flows
between two infinitely long coaxial cylinders. With the steady rotation of one
of the cylinders as well as a constant axial pressure gradient applied to the
fluid in the intercylindrical gap, helical flow results, with the particle paths
forming helices.

While exact solutions of the equations of motion for helical flow of Newtonian
fluids are readily found [8, Chap. 4], exact solutions for the non-linear
constitutive equations describing non-Newtonian fluids are impossible and
numerical solution procedures must be employed. Coleman and Noll [6]
gave a general solution for helical flow of a general non-Newtonian fluid,
but their very general solution is of limited applicability and says nothing
about yield stress fluids with yield zones in the flow. In certain helical flows,
analytical (as distinct from numerical) approximations for the flow field of
non-Newtonian fluids can be obtained. In particular, when a small parameter
is identified in the equations, perturbation methods provide very satisfactory
approximations [5, 9, 7, e.g.].

In this article we examine the helical flow of a Casson fluid flowing between
two coaxial cylinders, with the inner cylinder rotating and the outer cylinder
held stationary, applying a small axial pressure gradient. The rotational
shearing motion is assumed to provide enough stress for the fluid next to the
inner cylinder to yield, producing a fluid region adjacent to the inner cylinder
and a yield boundary in the intercylindrical gap. We apply a perturbation
method based on the axial pressure gradient to obtain explicit expressions
for the fluid velocity field and the location of the yield boundary in the flow.
This approach parallels that of Shepherd et al. [10] for the yielded helical flow
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of a Bingham fluid.

2 Governing equations

We consider the steady helical flow of an incompressible viscous fluid between
infinitely long coaxial cylinders, the inner cylinder with radius Ri and the
outer cylinder with radius Ro . The region between the cylinders is described
in cylindrical polar coordinates (r, θ, z), where Ri 6 r 6 Ro , 0 6 θ 6 2π ,
−∞ 6 z 6 ∞ . The inner cylinder has a constant angular velocity Ω > 0 ,
while the outer cylinder is held stationary. It is assumed that Ω is such that
only the fluid closest to the inner cylinder will yield, resulting in a liquid-solid
boundary at r = R̄ < Ro . In addition, we impose a small axial pressure
gradient A < 0 , which is such that a liquid-solid boundary is retained.

The axes of the cylinders are chosen to lie on the z-axis, with the axial compo-
nent of the flow in the positive z-axis direction. Like Shepherd et al. [10] who
dealt with a Bingham fluid, the velocity field is (ur,uθ,uz) = (0, rW(r),V(r))
for appropriate functions V(r), W(r) and the field satisfies conservation
of mass. The momentum equations then yield differential equations for
V(r) and W(r) within the fluid region,(√

To

K(r)
+
√
Ho

)2
V ′(r) =

A

r
(r2 − γ2) ,

(√
To

K(r)
+
√
Ho

)2
W′(r) =

−M

2πr3
, (1)

where the two positive constants To and Ho are the yield stress and viscosity,
respectively, which are given properties of the fluid, γ is an integration
constant to be determined, M > 0 is interpreted as the moment per unit
length exerted on the inner cylinder and A is the pressure gradient. Both
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M and A are given and drive the helical flow. The local rate of shearing is
written in terms of V ′ and W ′ as K(r) =

√
[(rW′)2 + V ′2]/2 .

Dividing the first equation of (1) by the second gives

V ′(r) = −2πAr2(r2 − γ2)W′(r)/M . (2)

The non-slip conditions on the inner cylinder and at the cylindrical freeze
boundary, plus the condition that K = 0 at the freeze boundary provide the
boundary conditions

V(Ri) = V(R̄) = V
′(R̄) = 0 , W(Ri) = Ω , W(R̄) =W′(R̄) = 0 . (3)

The second equation of (1) implies thatW ′(r) < 0 over the region Ri < r < R̄ ,
hence |W ′| = −W ′ and we write the local rate of shearing as

K = −
rW′φ(r,A,γ)√

2
, for φ(r,A,γ) =

√
1+

(
2πA

M

)2
r2(r2 − γ2)2 . (4)

Substituting (4) into the second equation of (1) yields a quadratic in W ′

which when solved subject to W ′ < 0 gives

W′ = −

√
2To

Hor

(
1√

φ (r,A,γ)
−

√
M

2
√
2πTor2

)2
. (5)

3 Dimensionless formulation

Define characteristic radial distance R, dimensionless radial variable s and
dimensionless constants si, so, s̄ and σ by

R = (Ri + Ro)/2 , r = Rs , Ri = Rsi ,
Ro = Rso , R̄ = Rs̄ , γ = Rσ , (6)
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and dimensionless forms of V and W by

v(s) = ΥV(Rs)/R , w(s) = ΥW(Rs) , where Υ = 2πHoR
2/M . (7)

The dimensionless forms of the equations of motion (5) and (2) are

w′(s) = −
1

s3

(
s

√
τo

ψ
− 1

)2
, v′(s) = as2(s2 − σ2)w′(s) , (8)

respectively, where

ψ =

√
1+ (sa)

2 (s2 − σ2)
2 , a = −

2πAR3

M
, τo =

2
√
2πToR

2

M
. (9)

The non-slip boundary conditions and freeze boundary conditions (3) become,
respectively,

v(si) = 0 , w(si) = ω = 2πHoR
2Ω/M , (10)

and

v(s̄) = 0 , w(s̄) = 0 , w′(s̄) = 0 . (11)

The unknown quantities in problem (8)–(11) are the functions w(s) and v(s),
and the constants σ, s̄ and ω. We view a as a known quantity.

In principle, the first equation of (8) may be integrated, and using the second
equation of (11) we can solve for the constant of integration in terms of
the unknown σ. If we then apply the last equation of (10), then we get
an equation involving the three unknowns σ, s̄ and ω. Similarly, we may
integrate the second equation of (8) and apply the first equations of both (10)
and (11) to get a second equation relating σ, s̄ and ω. Finally, applying the
last equation of (11) to the first equation of (8) gives an equation in the two
unknowns σ and s̄. Solving this system of three equations would provide a
complete solution.
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Equations (8)–(11) are highly nonlinear and in most cases must be solved
numerically. In what follows we consider the special case where the flow is
dominated by rotation and has a small axial flow component. The small
axial flow, being caused by a small pressure gradient A, corresponds to a
small a in the nondimensional formulation. This small parameter a is used
as a perturbation parameter to find approximate analytic expressions for
unknown quantities w(s), v(s), σ and s̄, and from these we calculate ω.

4 Perturbation analysis

We use perturbation expansions of w(s), v(s), σ and s̄ in the small parameter
a > 0 . Then we simplify the calculations that follow by applying an argument
analogous to that applied by Shepherd et al. [10]. Under this argument,
changing the sign of a corresponds to changing the sign of A and physical
arguments lead us to assert that s̄, σ and w(s) are even functions of a, while
v(s) is an odd function of a. Thus we propose the expansions

s̄ ∼ s̄0 + s̄2a
2 + s̄4a

4 + · · · , (12)
σ ∼ σ0 + σ2a

2 + σ4a
4 + · · · , (13)

v(s) ∼ v1(s)a+ v3(s)a
3 + v5(s)a

5 + · · · , (14)
w(s) ∼ w0(s) +w2(s)a

2 +w4(s)a
4 + · · · . (15)

Substituting (13), (14) and (15) into (8) and equating like powers of a produces
a sequence of differential equations for the first few terms of v(s) and w(s):

w′
0(s) = −

1

s3
(s
√
τo − 1)

2 , (16)

w′
2(s) =

1

2

√
τo (s
√
τo − 1)

(
s2 − σ20

)2 , (17)

v′1(s) = s2
(
s2 − σ20

)
w′
0(s) , (18)

v′3(s) = s2(s2 − σ20)w
′
2(s) − 2σ0σ2s

2w′
0(s) . (19)
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Applying the last equation of (11) to (15) gives

w ′(s̄) = w′
0(s̄) +w

′
2(s̄)a

2 +w′
4(s̄)a

4 + · · · = 0 .

Using (12), expanding each of the w′
i(s̄) about s̄0, and equating coefficients

of powers of a gives

w′
0(s̄0) = 0 , w′′

0 (s̄0)s̄2 +w
′
2(s̄0) = 0 . (20)

Similarly, applying (12) and (15) to the second equation of (11), and with
the first equation of (20), gives

w0(s̄0) = 0 , w2(s̄0) = 0 . (21)

In a like manner the first equations of (10) and (11) produce, on applying the
first equations of both (21) and (18),

v1(s̄0) = v1(si) = 0 , (22)
v3(s̄0) = v3(si) = 0 . (23)

4.1 Leading order terms

Here we consider the leading order terms of (12)–(13). This corresponds to
purely annular flow in the inter-cylinder gap.

From (20) and (16),

s̄0 =
1
√
τo

, (24)

determining s̄0. This also makes w′
2(s) < 0 on si < s < s̄0 .

Integrating (16) subject to the first boundary condition of (21) gives

w0(s) = τo log
(
s̄0

s

)
+ 2
√
τo

(
1

s̄0
−
1

s

)
+
1

2

(
1

s2
−
1

s̄20

)
. (25)
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Finally, integrating (18) subject to the boundary conditions (22) gives

σ20 =
τo
4

(
s̄40 − s

4
i

)
−

2
√
τo
3

(
s̄30 − s

3
i

)
+ 1

2

(
s̄20 − s

2
i

)
τo
2
(s̄20 − s

2
i ) − 2

√
τo (s̄0 − si) + log (s̄0/si)

, (26)

determining σ0. Since v(s) is assumed continuous and it must satisfy the
boundary conditions (10) and (11), v ′(s) must change sign on the domain
si 6 s 6 s̄0 . Since w ′(s) does not change sign on si 6 s 6 s̄0 , the sign
change of v ′(s) is only possible if σ2 > 0 .

4.2 Higher order terms

We now consider O(a2) terms of (12)–(13). These terms give corrections to
the O(1) terms.

Rearranging the second equation of (20) and using (16) and (17) gives

s̄2 = s̄40
√
τo
(
s̄20 − σ

2
0

)2
/4 . (27)

The coefficient σ2 is determined by integrating (19) subject to boundary
conditions (23):

σ2 =

∫s̄0
si
s2
(
s2 − σ20

)
w′
2(s)ds

2σ0
∫s̄0
si
s2w′

0(s)ds
. (28)

Next we find expressions for w2(s), v1(s) and v3(s). To find w2(s) we in-
tegrate (17) and apply the second equation of (21), to find v1(s) we inte-
grate (18) and apply the second equation of (22), and finally, to find v3(s) we
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integrate (19) and apply the second equation of (23):

w2(s) = H(s) −H(s̄0) , (29)

v1(s) =
τo

4

(
s4 − s4i

)
+
2
√
τo

3

(
s3 − s3i

)
+
σ20τo

2

(
s2 − s2i

)
−
1

2

(
s2 − s2i

)
− 2σ20

√
τo (s− si) + σ

2
0 log

(
s

si

)
, (30)

v3 (s) = G(s) −G(si) , (31)

where

H(s) =

√
τo

2

(
1

6

√
τos

6 −
1

5
s5 −

1

2
σ20
√
τos

4 +
2

3
σ20s
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1

2
σ40
√
τos

2 − σ40s

)
,

G(s) =
τo

20
s10 −

√
τo

18
s9 −

3τoσ
2
0

16
s8 +

3σ20
√
τo

14
s7 +

τoσ
4
0

4
s6 −

τoσ
6
0

8
s4

−
3σ40
√
τo

10
s5 +

σ60
√
τo

6
s3 + σ0σ2

(
τos

2 − 4
√
τos+ 2 log s

)
. (32)

Similarly, applying the boundary condition given by the second equation
of (10) to the perturbation expansion for w given by (15) gives an expression
for the angular velocity of the inner cylinder:

ω = ω0 +ω2a
2 + O(a4) , (33)

where

ω0 =
1

2s2i s̄
2
0

(
4
√
τo
(
s2i s̄0 − sis̄

2
0

)
+ 2τos

2
i s̄
2
0 log

(
s̄0

si

)
+ s̄20 − s

2
i

)
, (34)

ω2 = −
τo

2

(
1

6

(
s̄60 − s

6
i

)
−
σ20
2

(
s̄40 − s

4
i

)
+
σ40
2

(
s̄20 − s

2
i

))
−

√
τo

2

(
1

5

(
s̄50 − s

5
i
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+
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3
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3
i

)
− σ40 (s̄0 − si)

)
. (35)
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5 Discussion

The expansions (12), (13), (14) and (15) are explicit, readily computed ap-
proximate expressions for the fluid velocity components v(s) and w(s), and
the constants s̄ and σ. We expect these to be accurate for suitably small
positive values of the dimensionless parameter a. Note that a = 0 corre-
sponds to annular flow (no axial flow) with v(s) = 0 and the leading order
terms (24), (25), (26) and (34) describe the flow. The velocity sw0(s) is trans-
verse and s̄0 (24), which depends only on τo, locates the yield boundary. The
rate of rotation ω0 is dependent on τo and the cylinder geometry through (34).
The Reiner–Riwlin relationship (33) links all these parameters to Ω and a
measurement of Ω allows estimation of the fluid parameters T0 and H0.

For a > 0 , (14) and (15) describe the emerging helical flow field with
both transverse and axial components v(s) and w(s), while (12) and (13),
respectively, show variations in the yield boundary and axial velocity peak
due to the axial flow. From (27), s̄2 > 0 , that is, the yield boundary is shifted
outward, quantifying what is predicted qualitatively on physical grounds.
Similarly, since (17) gives w ′

2(s) < 0 on si < s < s̄0 , and from the second
equation of (21), w2(s̄0) = 0 , we deduce that ω2 = w2(si) > 0 . Thus, the
axial flow has the effect of increasing the angular speed of the fluid at the
inner cylinder.

We solved the helical flow problem numerically. Numerical solutions for
w(s) and v(s) are possible once σ, s̄ and ω are known after numerically
integrating (8) using appropriate boundary conditions.

To find values for σ and s̄ we used the two constraint equations w ′(s̄) = 0

and
∫s̄
si
v ′(s)ds = 0 . These equations have the form fi(σ, s̄) = 0 for i = 1, 2 .

The Matlab function fminsearch was used to find the point (σ, s̄) which
minimizes the maximum of the two functions |fi(σ, s̄)|. Typical maximum
values of |fi(σ, s̄)| are of the order of 10−17. This minimization problem is
non-trivial; a good solution is only found if the initial guess is close to the
exact solution. For this reason, for the initial estimate of (σ, s̄) we used our
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Figure 1: Velocity profile forw(s) where τo = 0.7583 , si = 0.1250 , s̄ = 1.1556
and the numeric freeze radius s̄ = 1.1558 .

analytic approximation. It is also important that the numerical integration
over v ′(s) in the second constraint is sufficiently accurate. Once σ and s̄ are
known, the angular velocity is calculated from ω = −

∫s̄
si
w ′(s)ds .

Figures 1 and 2 display velocity components v(s) and w(s) as given by the
first two terms of (14) and (15), across the intercylindrical gap for appropriate
choices of the fluid parameters, cylinders geometry and for small a. The
figures compare analytic and numerical results and show very good agreement.
Table 1 reinforces the agreement, giving the errors of the numerical results
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Figure 2: Velocity profile for v(s) where τo = 0.7583 , si = 0.1250 , s̄ = 1.1556
and the numeric freeze radius s̄ = 1.1558 .

compared to the analytical results for parameters σ, s̄ and ω for several small
values of a.
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Table 1: The absolute value of the difference between the numeric and analytic
solution for the flow parameters for different a values.

Error
a = 0.1 a = 0.01 a = 0.001

σ 0.1728× 10−7 0.1698× 10−11 0.1720× 10−15
s̄ 0.1324× 10−5 0.1279× 10−9 0.1063× 10−11
ω 0.3866× 10−5 0.3939× 10−6 0.1193× 10−8
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