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Applications of a finite element discretisation
of thin plate splines
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Abstract

The thin plate spline method is a widely used data fitting technique
which has the ability to smooth noisy data. We present some example
applications of a new mixed finite element discretisation of the thin
plate spline method. The new approach works with a pair of bases
for the gradient and the Lagrange multiplier forming a biorthogonal
system, thus ensuring that the scheme is numerically efficient and the
formulation is stable. We overview of the theoretical foundations of
the new approach and give numerical examples in both two and three
dimensions.
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1 Introduction

Thin plate splines are used to interpolate and smooth scattered data [4, 12].
Let Ω ⊂ Rd with d ∈ {2, 3} be a polygonal or polyhedral domain. Given
a set G = {pi}

N
i=0 of scattered points in Ω and a set of function values

{si = f(pi)}
N
i=0 , the thin plate spline is a smooth function u : Ω→ R which

minimises the functional

1

N

N∑
i=1

[u(pi) − si]
2 + α

∫
Ω

∑
|ν|=2

(
2

ν

)
(Dνu)2 dx (1)

over a space of functions H2(Ω), where ν = (ν1, . . . ,νd) ∈ Nd0 is a d-
dimensional vector used for multi-index notation, and Dνu denotes the
usual partial derivative (

∂

∂x1

)ν1
· · ·
(
∂

∂xd

)νd
u .
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Moreover, |ν| =
∑d

i=1 νi and α is a positive constant. Techniques such as the
generalised cross validation (gcv) may be used to find an appropriate choice
of α [6, 12].

Our formulation is obtained by introducing an auxiliary variable σ = ∇u
such that the minimisation problem (1) is rewritten as [3, 7, 9]

min
(u,σ)∈V,σ=∇u

(
1

N

N∑
i=1

[u(pi) − si]
2 + α‖∇σ‖2L2(Ω)

)
, (2)

where V = H1(Ω)×[H1(Ω)]d. This is a constrained minimisation problem with
the gradient σ of the smoother u where both variables are in H1 space. Hence
we use a H1-conforming finite element method to discretise this problem, in
contrast to the requirement of a H2-conforming method for the minimisation
problem (1). A H1-conforming finite element method with a biorthogonal
system for the minimisation problem (2) is more efficient than aH2-conforming
method for the minimisation problem (1) [11].

We introduce a variational equation for the constraint σ = ∇u by means
of a Lagrange multiplier space. Through appropriate choices of bases for
the finite element discretisation, the gradient of the smoother σ and the
Lagrange multiplier φ are easily eliminated from the discrete system. We
introduced this idea previously [10] where we used bubble functions to enrich
the discrete space for the gradient to guarantee a unique solution. However,
we are unable to prove convergence of this scheme. In our new approach,
bubble functions are used to enrich the smoother and we add a consistent
stabilising term, similar to the idea described by Arnold and Brezzi [1], to
get a stable formulation in the discrete setting.

Lamichhane et al. [11] detailed the theoretical framework for the new approach.
The aim of this current article is to give an overview of the techniques and to
study example applications in two and three dimensions.
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2 Discrete setting

Let Th be a globally quasi-uniform and shape regular triangulation of the
domain Ω consisting of triangles or tetrahedra with mesh-size h. Let

Sh = {uh ∈ C0(Ω) | uh|T ∈ P(T) , T ∈ Th} (3)

be the standard linear finite element space where P(T) is the space of linear
functions on T ; and let

Bh =

{
bh | bh|T = (d+ 1)d+1

d+1∏
i=1

φTi , T ∈ Th

}

be the space of bubble functions where {φTi }
d+1
i=1 is the set of standard linear

basis functions associated with the d+ 1 vertices of T . Let Lh = Sh⊕Bh . We
enrich the standard finite element space Sh with element-wise defined bubble
functions to obtain the space Lh. This is done in order to obtain an optimal
error estimate of the discrete solution.

Denoting the discrete counterpart of the continuous space V by Vh = Lh×[Sh]d ,
a discrete version of (2) is

min
(uh,σh)∈Vh

(
1

N

N∑
i=0

[uh(pi) − si]
2 + α‖∇σh‖2L2(Ω)

)
(4)

subject to the constraint

〈σh,ψh〉L2(Ω) = 〈∇uh,ψh〉L2(Ω) , ψh ∈ [Mh]
d . (5)

The space [Mh]
d plays the role of a Lagrange multiplier space. As discussed

in Section 3, Mh ⊂ L2(Ω) is constructed in such a way as to simplify the
resulting saddle point problem.

We previously used a similar approach [10] but found the saddle point problem
is not stable since the discretisation is similar to a P1 − P1 discretisation of
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a Darcy or Stokes problem [5, 8, for example]. To avoid this problem we
now introduce a modification, as suggested by Arnold and Brezzi [1] for the
Mindlin–Reissner plate, so that our discrete saddle point problem is to find
[(uh,σh),φh] ∈ Vh × [Mh]

d such that

A [(uh,σh), (vh,τh)] + B [φh, (vh,τh)] = f(vh) , (vh,τh) ∈ Vh ,
B [ψh, (uh,σh)] = 0 , ψh ∈ [Mh]

d , (6)

where

A [(uh,σh), (vh,τh)] =
1

N
(Puh)

TPvh + α

∫
Ω

∇σh : ∇τh dx ,

+ r

∫
Ω

(σh −∇uh) · (τh −∇vh)dx ,

B [ψh, (vh,τh)] =
∫
Ω

τh ·ψh dx−
∫
Ω

∇vh ·ψh dx ,

f(vh) =
1

N
(Pvh)

Ts ,

with r > 0 a stabilisation parameter. Here we denote function values of u at
the measurement points {pi}Ni=0 by Pu = (u(p0),u(p1), . . . ,u(pN))T and s is
a column vector with ith entry si for i = 0, . . . ,N . The notation ∇σh : ∇τh
denotes the dot product of the two matrices ∇σh and ∇τh. The integral
multiplied by r is a stabilisation term. The remaining terms in A[·, ·] come
from (4) and B[·, ·] is a bilinear form of constraint (5).

Since the stabilisation term is consistent, the parameter r > 0 is in princi-
ple arbitrary. By choosing an appropriate value of r, the stabilisation can
accelerate the solver, as in an augmented Lagrangian formulation [2].

The error estimate is obtained in the energy norm ‖ · ‖A induced by the
bilinear form A[·, ·] and is defined as

‖(u,σ)‖A :=

√
1

N
‖Pu‖2 + α|σ|2

H1(Ω)
+ r‖σ−∇u‖2

L2(Ω)
, (7)
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where (u,σ) ∈
(
C0(Ω) ∩H1(Ω)

)
× [H1(Ω)]d . Lamichhane et al. [11] showed

that the difference between the solution of the original continuous problem (1)
and the solution of the discrete problem (6) decreases linearly with the
mesh-size h in the energy norm ‖ · ‖A. See Theorem 4.4, Theorem 4.6 and
Collorary 4.7 by Lamachhane et al. [11] for a description of the framework
needed to prove such a convergence result.

3 Algebraic formulation

The following lists matrices and their associated bilinear form:

R : 1
N
(Puh)

TPvh , A :
∫
Ω
∇σh : ∇τh dx ,

B :
∫
Ω
∇uh ·ψh dx , W :

∫
Ω
∇uh · τh dx ,

K :
∫
Ω
∇uh · ∇vh dx , D :

∫
Ω
σh ·ψh dx ,

M :
∫
Ω
σh · τh dx .

We use the vectors U, Σ and Φ to store the coefficients associated with the
discrete variables uh, σh and φh, respectively.

The first equation of (6) is true for all test functions τh and vh, so by setting
τh and vh to zero,

1

N
(Puh)

TPvh −

∫
Ω

∇vh ·φh dx− r

∫
Ω

(σh −∇uh) · ∇vh dx = f(vh) ,

α

∫
Ω

∇σh : ∇τh dx+
∫
Ω

φh · τh dx+ r
∫
Ω

(σh −∇uh) · τh dx = 0 ,

with vh ∈ Lh and τh ∈ [Sh]
d . Then the saddle point problem (6) is written

as the linear system R+ rK −rWT −BT

−rW αA+ rM DT

−B D 0

 U

Σ
Φ

 =

 F0
0

 , (8)
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where F is the discrete vector form of the linear form f(·).

Recall Sh is the standard finite element basis space, Mh is defined such that
dimMh = dimSh, and the basis of Sh and Mh satisfy a biorthogonality
relationship. Lamichhane et al. [11] defined exactly the definition of the basis
of Mh.

Constructing Mh so that a biorthogonality condition is satisfied ensures
that D is a nonsingular diagonal matrix. This allows us to to statically
condense out the degree of freedom associated with Σ and Φ. After statically
condensing out variables Σ and Φ (block elimination) from (8), we arrive at
the reduced system[

(R+ rK) − r(WTD−1B+ BTD−1W) + BTD−1(αA+ rM)D−1B
]
U = F .

(9)

Lamichhane et al. [11, Theorem 4.1] proved that the system in (9) is positive
definite if the domain contains at least three non-collinear points for d = 2
and four non-coplanar points for d = 3 .

4 Numerical examples

To finish the discussion we now present some example applications of the
method described above. In all of the examples the domain is the unit square
and the finite element grid is a uniform grid. This approach was taken for
ease of implementation; the theory does not require the use of a uniform finite
element grid.

We used the preconditioned conjugate gradient method to solve equation (9).
The preconditioner is described by Lamichhane et al. [11]. The iterations
continue until the l2 norm of the residual is less than 10−7. To find an initial
guess we fit the linear polynomial p1(x) = c0 +

∑d
i=1 cixi to the original data

set by using the standard least squares method. The reason for using the
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linear polynomial as an initial guess is to avoid issues that may arise when α is
large or there are a small number of data points.

There is a trade-off in choosing an appropriate value for r. If r is too large for
a given value of h, then the spline will be too smooth. On the other hand, as
discussed in Section 2, the stabilisation term is required to obtain a consistent
system, so r cannot be made arbitrarily small. We set r = 104α .

4.1 Two dimensional examples

The first example we look at is the Matlab spine data set (which is obtained
by typing load spine in a Matlab command window). The data set consists
of 179 830 points. The top plot of Figure 1 contains an image plot of the
original data set. The two images in Figure 2 show an image plot of uh(pi)
with 0 6 i 6 N for different sized finite element grids. The bottom plot of
Figure 1 shows a plot of |(uh(pi) − si)| for 0 6 i 6 N . Not surprisingly, most
of the smoothing occurred around the edges of the bone structure.

The top plot of Figure 3 presents a surface plot of the original data set
and the bottom plot is the finite element approximation. These give a
different perspective when comparing the original data set and the spline
approximation.

The next test problem is artificially generated. It is designed to test what
happens when data is missing. We initially took 99× 99 data points evenly
distributed on the domain 0.01 6 ‖pi‖∞ 6 0.99 and assigned each point the
value si = sin (4πxi) sin (4πyi) where pi = (xi,yi) . The top plot of Figure 4
shows this data set. The bottom plot of Figure 4 shows the surface plot of
the finite element approximation to the spline on a grid with 4 225 vertices
and α = 10−7 . We see that regions of missing data are filled with a smooth
spline.

To create the last test problem considered in this section we took the data
set in the top plot of Figure 4 and added 5% uniformally distributed noise,
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Figure 1: Image plots of (top) the Matlab spine data set and (bottom) the
difference between the original spine data set and the finite element approxi-
mation of the spine data set using a finite element grid with 66 049 vertices
and α = 10−9 .
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Figure 2: Image plots of the finite element approximation of the spine data
set with α = 10−9 and using a finite element grid with (top) 289 vertices and
(bottom) 4 225 vertices
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Figure 3: Surface plots of (top) the Matlab spine data set and (bottom) its
finite element approximation using a grid with 66 049 vertices and α = 10−9 .
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Figure 4: Surface plots of (top) the sine data set and (bottom) its finite
element approximation using a finite element grid with 4 225 vertices and
α = 10−7 .
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producing the top plot of Figure 5. The bottom plot of Figure 5 shows the
surface plot of the finite element approximation to the spline on a grid using
4 225 vertices with α = 10−8 . The noise is evident around the boundary
of the domain of the bottom plot, but appears to be smoothed out in the
interior.

4.2 Three dimensional examples

For the three dimensional example we took 101×101×101 data points evenly
distributed on the domain 10/101 6 ‖pi‖∞ 6 10− 10/101 and assigned each
point the value si = sin (xiyizi) /(xiyizi) where pi = (xi,yi, zi) . The top
right plot of Figure 6 shows the data set. Isosurface plots of the finite element
approximation to the spline on grids with different numbers of nodes are in
the two bottom plots of Figure 6.

The data set used in Figure 6 describes a smooth function. Now we look at
an example of a noisy data set. We take the data set in the top right plot of
Figure 6 and add 5% uniformly distributed random noise. An isosurface plot
of the noisy data set is shown in the top right plot of Figure 7. The plotting
routine applies some smoothing to the data set, so the figure does not show
all the detail. The thin plate spline uses the biharmonic equation to smooth
out the noise in the data set, as shown in the two bottom plots of Figure 7.

5 Conclusion

A mixed finite element method for approximating thin plate splines in two
and three dimensions was presented. The particular choice of finite element
bases was determined by the aim to simplify the resulting system of equations.
A stabilising term was introduced into the system to ensure that it is stable.
A number of example applications were given to explore the properties of this
new approach.
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Figure 5: Surface plots of (top) noisy sine data and (bottom) its finite element
approximation using a finite element grid with 4 225 vertices and α = 10−8 .
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Figure 6: Isosurface plots
of the 3D test example (top
right) without noise, and
its finite element approxima-
tions with α = 10−7 and
using a finite element grid
and (bottom left) 2 465 ver-
tices and (bottom right)
17 985 vertices.
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Figure 7: Isosurface plots
of the 3D test example (top
right) with noise, and its fi-
nite element approximations
with α = 10−7 and using a
finite element grid with (bot-
tom left) 2 465 vertices and
(bottom right) 17 985 ver-
tices.
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