
ANZIAM J. 56 (CTAC2014) pp.C446–C462, 2016 C446

Implementation of parallel tridiagonal solvers
for a heterogeneous computing environment

H. J. Macintosh1 D. J. Warne2 N. A. Kelson3

J. E. Banks4 T. W. Farrell5

(Received 3 March 2015; revised 8 February 2016)

Abstract

Tridiagonal diagonally dominant linear systems arise in many sci-
entific and engineering applications. The standard Thomas algorithm
for solving such systems is inherently serial, forming a bottleneck in
computation. Algorithms such as cyclic reduction and spike reduce a
single large tridiagonal system into multiple small independent systems
which are solved in parallel. We develop portable cyclic reduction and
the spike algorithm for Open Computing Language implementations
on a range of co-processors in a heterogeneous computing environment,
including field programmable gate arrays, graphics processing units and
other multi-core processors. We evaluate these designs in the context
of solver performance, resource efficiency and numerical accuracy.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/9371
gives this article, c© Austral. Mathematical Soc. 2016. Published February 24, 2016, as
part of the Proceedings of the 17th Biennial Computational Techniques and Applications
Conference. issn 1446-8735. (Print two pages per sheet of paper.) Copies of this article
must not be made otherwise available on the internet; instead link directly to this url for
this article.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/9371

Contents C447

Contents
1 Introduction C447

2 Background C449
2.1 Tridiagonal linear systems C449
2.2 Heterogeneous computing with OpenCL C449

3 Parallel tridiagonal linear systems solvers C450
3.1 Parallel cyclic reduction C450
3.2 SPIKE . C451
3.3 Implementation using OpenCL C452

4 Evaluation C453
4.1 FPGA resource utilisation C453
4.2 Compute performance . C454
4.3 Numerical accuracy . C456
4.4 Power utilisation . C457

5 Conclusion C457

References C458

1 Introduction

Tridiagonal and block tridiagonal linear systems arise in many computational
applications. Some applications involve the solving of many small independent
systems whilst others require solving fewer large systems [13, 18]. The focus of
this article is the case when the linear system is strictly diagonally dominant.

As high performance computing (hpc) platforms become more parallel, spe-
cialised and heterogeneous, the requirement for parallel algorithms to be
portable as well as efficient is increasing. We develop an Open Computing

1 Introduction C448

Language (Opencl) implementation of two well known parallel tridiagonal
solvers. Our implementation is portable and capable of executing on a range
of co-processor environments.

Of particular interest in this work are field programmable gate arrays (fpgas).
These are reconfigurable computing devices that consist of an interconnected
array of configurable logic blocks and memory modules in the form of dis-
tributed block rams. The configurable logic blocks are simple units built from
look-up tables, logic gates and multiplexers. Configurable logic blocks can be
configured and routed at run time to define custom processor architectures.

Traditionally, fpgas were mainly used in embedded devices or for hardware
prototyping. Recently, the floating point performance of fpgas reached
a point where they have become much more relevant to the hpc arena,
particularly with the approach of exascale machines [6, 11, 15]. As a result,
fpga-based linear algebra architecture design is an area of active research [12,
16, 18, 21].

The biggest barrier to effective use of fpgas has always been the difficulty in
programming them. Until recently, this entailed a hardware design process
rather than software development. However, advances have been made with
both major fpga vendors releasing Opencl compliant boards which produce
comparable results to manual hardware design [1, 20].

Using the Altera based Opencl, Warne et al. [18, 19] demonstrated the ease in
which a custom tridiagonal linear system solver can be deployed. In this work,
we extend our previous efforts towards a more general highly parallel solution,
targeting fpgas in particular, but also other Opencl compliant co-processors
that may be present within a heterogeneous computing environment.

2 Background C449

2 Background

2.1 Tridiagonal linear systems

A linear system Ax = b is tridiagonal if the coefficient matrix A ∈ Rn×n is
banded with bandwidth β = 1 . That is,

A =

a1,1 a1,2
a2,1 a2,2 a2,3

.
an−1,n−2 an−1,n−1 an−1,n

an,n−1 an,n

 .

Considering strictly diagonally dominant systems only, it is well known that
the lu-decomposition can be performed in Θ(n) operations using the Thomas
algorithm [14]. Although Θ(n) is a vast improvement on a fully dense lu-
decomposition, the Thomas algorithm is inherently serial. As a result, the
high performance of modern highly parallel computing architectures cannot
be directly exploited.

For applications involving many small independent systems it is easy to
achieve parallel computation using a standard Thomas algorithm. However,
more advanced, inherently parallel methods must be applied if the problem
requires solving fewer large systems.

Specialised architectures for specifically solving tridiagonal linear systems
were designed using field programmable gate arrays [12, 18]. However, these
systems were built with very specific uses in mind.

2.2 Heterogeneous computing with OpenCL

The ideal parallel approach depends greatly on the computing devices available
to the program. hpc platforms are becoming more reliant on specialist co-

3 Parallel tridiagonal linear systems solvers C450

processors, each with their own programming models. This naturally makes
designing a general, portable solution difficult.

Opencl is an open standard for heterogeneous computing [9]. Implementa-
tions of the Opencl standard were developed by vendors of a wide range
of computing devices including many-core cpus, graphics processing units
(gpus), digital signal processors and, recently, fpgas. These implementations
enable a developer to build a portable computational routine which will
execute on any of the available resources.

The Opencl programming model divides program code into two partitions:
1) serial code to be executed on a host processor; and 2) parallel code to be
executed on any number of co-processor devices. Each device is treated as an
array of compute units which can operate asynchronously, and each unit is
further divided into synchronised processing elements.

3 Parallel tridiagonal linear systems solvers

Many parallel algorithms exist for solving tridiagonal and block-tridiagonal
linear systems and are implemented in well established numerical libraries
such as Scalapack [3, 4, 7, 10]. In this section, we briefly present two parallel
tridiagonal solver schemes which were the focus of gpu implementations,
namely, cyclic reduction [8] and spike [13].

3.1 Parallel cyclic reduction

The method of cyclic reduction splits a single tridiagonal system into two
smaller independent tridiagonal systems [8]. This is done by transforming
the ith equation,

ai,i−1xi−1 + ai,ixi + ai,i+1xi+1 = bi ,

3 Parallel tridiagonal linear systems solvers C451

into

αiai,i−1xi−2+(ai,i + αiai−1,i + βiai+1,i) xi+βiai,i+1xi+2 = bi+αibi−1+βibi+1 ,

where αi = −ai,i−1/ai−1,i−1 and βi = −ai,i+1/ai+1,i+1 . The result of cyclic
reduction is two independent tridiagonal linear systems, one containing equa-
tions with even indexed unknowns and another containing equations with
odd indexed unknowns. This transformation can be applied recursively to
any number of independent systems.

3.2 SPIKE

Another parallel method is the so-called “spike” algorithm [13]. In this
method, the coefficient matrix is factorised to A = DS where matrix D =
diag(A1,A2, . . . ,Ap) with Aj diagonal blocks of A, and

S =

I V1
W2 I V2

.
Wp−1 I Vp−1

Wp I

 , (1)

where p is the number of partitions, m is the number of linear equations per
partition, and n is the total number of linear equations in the system, so
n = pm . Here Wi,Vi ∈ Rm×1 are obtained by solving

Ai
[
Vi Wi

]
=

 0 aim+1,im
...

...
aim,im+1 0

 . (2)

Factorising A in this way allows the original Ax = b to be solved by first
solving Dy = b as p independent tridiagonal systems and then solving
Sx = y . The second step can also be transformed into p independent systems
in Θ(p) operations.

3 Parallel tridiagonal linear systems solvers C452

Algorithm 1: : pcr compute kernel logic
[iG, iL]← get_ids {work group and work item index}
Uc,Dc,Lc,bc ∈ Rn {shared local cache of system iG}
s← 1 {solve for xiL in r recursive steps}
for all i ∈ [1, · · · , r] do
α← −Lc [iL] /Dc [iL − s], β← −Uc [iL] /Dc [iL + s]
U ′ ← βUc [iL + s], L ′ ← αLc [iL − s]
D ′ ← Dc [iL] + αUc [iL − s] + βLc [iL + s]
b ′ ← bc [iL] + αbc [iL − s] + βbc [iL + s]
{synchronise all work items}
[Uc [iL] ,Dc [iL] ,Lc [iL] ,bc [iL]]← [U ′,D ′,L ′,b ′]
s← 2s

end for

3.3 Implementation using OpenCL

For parallel cyclic reduction (pcr), the kernel code developed in this work
defines the process of solving for a single unknown. The ith processing
element solves for xi. A single linear system is loaded from ‘off-chip’ global
memory into fast local memory which is shared by all processing elements
within a compute unit. Each xi is then solved simultaneously as shown in the
pseudo-code in Algorithm 1.

At the present stage of development, our spike implementation uses a di-
rect mapping of a processing element to the work required to factorise the
pth partition of A. With this allocation of workload to processors, a number
of processors operate in parallel on each compute unit. There is a sequential
bottleneck of Θ(p) in reducing the system Sx = y into a set of parallel
back-substitutions. The final solution is then recovered though parallel back-
substitution in the same manner as the factorisation step.

4 Evaluation C453

4 Evaluation

One of the main aims of this work is the exploration and development of
efficient parallel tridiagonal solvers which take advantage of a range of possible
compute platforms. To assess the feasibility of the design, we specifically
focus on resource utilisation, compute performance and numerical accuracy.
In this section, our implementations of pcr and spike are evaluated against
pre-existing implementations targeting nvidia gpus. Not only do the results
show that our designs are comparable when running on nvidia hardware but
they also indicate that the fpga platform is a promising alternative.

4.1 FPGA resource utilisation

Unlike fixed architectures such as gpus and cpus, Opencl implementations
targeting fpgas allow the number of compute units and processing elements
to be varied. However, the specific choices made for these will affect both
algorithm performance and utilisation of resources on the fpga configurable
logic fabric.

We tuned the combination of both compute units and processing elements for
maximum throughput for both the pcr and spike implementations. Table 1
gives the optimal configurations. The estimated fpga resource utilisation
percentages are also included in the table, and these were generated for
the target Altera Stratix v architecture using the Altera Opencl software
development kit. The percentages of consumed fpga logic resources (i.e.,
block ram and lookup tables) are within the total amounts available and
show that each design implementation on the target architecture is feasible.
However, for maximum throughput the fpga cannot be configured to run
all spike stages at the same time, so instead some reconfiguration between
stages is necessary.

4 Evaluation C454

Table 1: Logic utilisation percentage of optimum configuration for the Altera
Stratix v fpga.

Compute Processing Block Lookup
Design Units Elements ram Tables
pcr 8 2 92% 99%
spike factorise 1 4 92% 99%
spike partition Sx = y 1 16 43% 46%
spike back-solve 1 8 22% 30%

4.2 Compute performance

We are not aware of any other Opencl implementation of pcr or spike
designed with an fpga as the target architecture. This makes it difficult to
benchmark. As a result, we compiled our Opencl code for an nvidia gpu
to aid comparison with other pcr and spike implementations along with
the performance for a sequential Thomas cpu based solution. In addition,
our estimated fpga performance is placed along side these results. The
fpga estimates are produced by the Altera offline compiler; an analysis
of the hardware schematic generates these through the compilation process
to provide the number of Opencl work items that can be executed per
second. We converted the estimated throughput to system solves per second
(rather than more usual flop based measures) to ease comparison with the
most relevant studies. In reality, data transfer overheads can impede this
throughput [19]; however, there are a number of coding practices which can
assist in minimising this impact [2].

nvidia provides an Opencl implementation of pcr which is distributed
with their cuda software development kit. Figure 1 provides the throughput
(Systems/sec) for our pcr implementation against the nvidia implementation
for systems of size n ∈ [64, 128, 256, 512, 1024]. Our implementation out-
performs nvidia’s when running on an nvidia Quadro 4000 gpu. Our
estimates also show that the fpga implementation will run on-par with the
nvidia gpu code; considering the fpga is running at only a fraction of the

4 Evaluation C455

Figure 1: Compute throughput of parallel cyclic reduction implementations
versus a single threaded Thomas algorithm

clock speed (≈ 150MHz) this is quite impressive.

An analogous performance comparison was performed with our spike im-
plementation against a cuda implementation. For the given system size
range, our gpu based implementation has comparable performance to Chang
et al. [5]. Also, the estimated performance of our fpga design out-performs
both gpu implementations by approximately a factor of four. The fpga
estimates are likely to be optimistic in this case as the re-configuration time
required when switching between spike stages is not taken into consideration.
Although not explored here, this re-configuration time (6 100ms) could be
hidden in practice by, for example, processing spike stages in batches.

4 Evaluation C456

Figure 2: Compute throughput of spike implementations versus a single
threaded Thomas algorithm

Table 2: Numerical accuracy of pcr and spike (n = 1024) .
Thomas pcr spike

‖x− b‖∞ 3.6× 10−7 5.4× 10−7 4.2× 10−7

4.3 Numerical accuracy

We found both our pcr and spike implementations to be of similar accuracy
to a standard Thomas algorithm (see Table 2). Currently, all our analysis
and test cases are based on strictly diagonally dominant matrices which do
not require pivot operations. In future work, we intend to perform a more
general numerical stability analysis as we extend the work to other matrix
types.

5 Conclusion C457

4.4 Power utilisation

As the purpose of this study is to assess the feasibility of building efficient
linear algebra implementations for a heterogeneous computing environment,
we have not performed any detailed analysis on power consumption. However,
the attraction of such a heterogeneous environment is strongly motivated
by potential increase in power efficiency due to the significantly (order of
magnitude) lower power consumption of fpgas [6].

To put Figures 1 and 2 into context, the Altera fpga pci-e card consumes a
maximum of 35W under load. By comparison, an nvidia Quadro 4000 has a
maximum power consumption of 142W. While a detailed examination of the
various tridiagonal solvers remains for future work, we previously investigated
power utilisation in the context of image processing algorithms with promising
results [17].

5 Conclusion

In this article we explored the feasibility of designing truly portable multi-
platform high performance linear algebra routines using Opencl. The parallel
tridiagonal solvers of cyclic reduction and spike were implemented on an fpga
and a gpu and compared against other Opencl and cuda implementations.
Results to date indicate that in terms of accuracy and computational efficiency,
our designs are comparable for both fpga and gpu cases. This suggests that
further investigation is warranted, and in future work we intend to continue
to develop and improve upon our designs for tridiagonal solvers in the broader
context of providing enhanced platforms for high performance, low power
numerical routines.

Acknowledgments This project utilised the hpc facility at the Queensland
University of Technology (qut). The facility is administered by qut’s hpc

References C458

and research support group. A special thanks to the hpc group for their
support, particularly in providing access to specialist fpga and gpu resources.

References

[1] Altera. Implementing FPGA design with the OpenCL standard.
Technical report, Altera Inc., November 2013.
http://www.altera.com/literature/wp/wp-01173-opencl.pdf
C448

[2] Altera. Altera SDK for OpenCL: Best practices guide. Technical report,
Altera Inc., May 2015.
https://www.altera.com/content/dam/altera-www/global/en_US/
pdfs/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
C454

[3] P. Arbenz, A. Cleary, J. Dongarra, and M. Hegland. A comparison of
parallel solvers for diagonally dominant and general narrow-banded
linear systems. Parallel and Distributed Computing Practices, 2:385–400,
1999. http://www.scpe.org/index.php/scpe/article/view/152
C450

[4] P. Arbenz, A. Cleary, J. Dongarra, and M. Hegland. A comparison of
parallel solvers for diagonally dominant and general narrow-banded
linear systems II. In Euro-Par’99 Parallel Processing, Berlin, vol. 1685
of Lecture Notes in Computer Science pp. 1078–1087. Springer, 1999.
doi:10.1007/3-540-48311-X_151 C450

[5] L.-W. Chang, J. A. Stratton, H.-S. Kim, and W. W. Hwu. A scalable,
numerically stable, high-performance tridiagonal solver using GPUs. In
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pp. 1–11. IEEE
Computer Society Press, 2012. doi:10.1109/SC.2012.12 C455

http://www.altera.com/literature/wp/wp-01173-opencl.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
http://www.scpe.org/index.php/scpe/article/view/152
http://dx.doi.org/10.1007/3-540-48311-X_151
http://dx.doi.org/10.1109/SC.2012.12

References C459

[6] Y. Dou, Y. Lei, G. Wu, S. Guo, J. Zhuo, and L. Shen. FPGA
accelerating double/quad-double high precision floating-point
applications for exascale computing. In Proceedings of the 24th ACM
International Conference on Supercomputing, pp. 325–336, 2010.
doi:10.1145/1810085.1810129 C448, C457

[7] C. R. Dun, M. Hegland, and M. R. Osborne. Parallel stable solution
methods for tridiagonal linear systems of equations. In Computational
Techniques and Applications: CTAC95 Proceedings of the Seventh
Biennial Conference, pp. 267–274. World Scientific, 1996.
doi:10.1142/9789814530651 C450

[8] W. Gander and G. H. Golub. Cyclic reduction—history and
applications. In Scientific Computing, Proceedings of the Workshop,
1997, pp. 73–111. Springer, 1998.
http://www.springer.com/fr/book/9789813083608 C450

[9] Khronos OpenCL Working Group. The OpenCL specification. Technical
report, Khronos Group, October 2009.
http://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
C450

[10] M. Hegland. On the parallel solution of tridiagonal systems by
wrap-around partitioning and incomplete LU factorization. Numer.
Math., 59(1):453–472, 1991. doi:10.1007/BF01385791 C450

[11] D. Jensen and A. F. Rodrigues. Embedded systems and exascale
computing. Comput. Sci. Eng., 12(6):20–29, 2010.
doi:10.1109/MCSE.2010.95 C448

[12] S. Palmer. Accelerating implicit finite difference schemes using a
hardware optimised implementation of the thomas algorithm for FPGAs.
Technical Report, 2014. http://arxiv.org/abs/1402.5094 C448,
C449

http://dx.doi.org/10.1145/1810085.1810129
http://dx.doi.org/10.1142/9789814530651
http://www.springer.com/fr/book/9789813083608
http://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
http://dx.doi.org/10.1007/BF01385791
http://dx.doi.org/10.1109/MCSE.2010.95
http://arxiv.org/abs/1402.5094

References C460

[13] E. Polizzi and A. H. Sameh. A parallel hybrid banded system solver:
the spike algorithm. Parallel Comput., 32:177–194, 2006.
doi:10.1016/j.parco.2005.07.005 C447, C450, C451

[14] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.
Numerical Recipes in FORTRAN: The art of Scientific Computation.
Cambridge University Press, Cambridge, England, 2nd edition, 1992.
http://www.cambridge.org/au/academic/subjects/mathematics/
numerical-recipes/
numerical-recipes-fortran-77-art-scientific-computing-volume-1-2nd-edition
C449

[15] J. Shalf, S. Dosanjh and J. Morrison. Exascale computing technology
challenges. In High Performance Computing for Computational
Science—VECPAR 2010, vol. 6449 of Lecture Notes in Computer
Science, pp 1–25. Springer, 2011. doi:10.1007/978-3-642-19328-6_1 C448

[16] S. Skalicky, S. Lopez, M. Lukowiak, J. Letendre and M. Ryan.
Performance modeling of pipelined linear algebra architectures on
FPGAs. In Reconfigurable Computing: Architectures, Tools and
Applications, vol. 7806, Lecture Notes in Computer Science pp. 146-153.
Springer, 2013. doi:10.1007/978-3-642-36812-7_14 C448

[17] D. J. Warne, R. F. Hayward, N. A. Kelson, J. E. Banks, and L. Mejias.
Pulse-coupled neural network performance for real-time identification of
vegetation during forced landing. In Engineering Mathematics and
Applications Conference (EMAC2013), vol. 55 of ANZIAM J., pp.
C1–C16, 2014. http://journal.austms.org.au/ojs/index.php/
ANZIAMJ/article/view/7851 C457

[18] D. J. Warne, N. A. Kelson, and R. F. Hayward. Solving tri-diagonal
linear systems using field programmable gate arrays. In Proceedings of
the 4th International Conference on Computational Methods
(ICCM2012), 2012. http://eprints.qut.edu.au/54894/ C447, C448,
C449

http://dx.doi.org/10.1016/j.parco.2005.07.005
http://www.cambridge.org/au/academic/subjects/mathematics/numerical-recipes/numerical-recipes-fortran-77-art-scientific-computing-volume-1-2nd-edition
http://www.cambridge.org/au/academic/subjects/mathematics/numerical-recipes/numerical-recipes-fortran-77-art-scientific-computing-volume-1-2nd-edition
http://www.cambridge.org/au/academic/subjects/mathematics/numerical-recipes/numerical-recipes-fortran-77-art-scientific-computing-volume-1-2nd-edition
http://dx.doi.org/10.1007/978-3-642-19328-6_1
http://dx.doi.org/10.1007/978-3-642-36812-7_14
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/7851
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/7851
http://eprints.qut.edu.au/54894/

References C461

[19] D. J. Warne, N. A. Kelson, and R. F. Hayward. Comparison of high
level FPGA hardware design for solving tri-diagonal linear systems.
Proc. Comput. Sci., 29:95–101, 2014. doi:10.1016/j.procs.2014.05.009
C448, C454

[20] L. Wirbel. Xilinx SDAccel: A unified development environment for
tomorrow’s data center. Technical report, The Linley Group Inc.,
November 2014. http://www.xilinx.com/publications/prod_mktg/
sdnet/sdaccel-wp.pdf C448

[21] G. Wu, Y. Dou, J. Sun and G. D. Peterson. A high performance and
memory efficient LU decomposer on FPGAs. IEEE T. Comput.,
61:366–378, 2012. doi:10.1109/TC.2010.278 C448

Author addresses

1. H. J. Macintosh, School of Electrical Engineering and Computer
Science, Queensland University of Technology, Queensland 4001,
Australia.
mailto:hj.macintosh@hdr.qut.edu.au

2. D. J. Warne, High Performance Computing and Research Support,
Queensland University of Technology, Queensland 4001, Australia.
mailto:david.warne@qut.edu.au

3. N. A. Kelson, High Performance Computing and Research Support,
Queensland University of Technology, Queensland 4001, Australia.
mailto:n.kelson@qut.edu.au

4. J. E. Banks, School of Electrical Engineering and Computer Science,
Queensland University of Technology, Queensland 4001, Australia.
mailto:j.banks@qut.edu.au

5. T. W. Farrell, School of Mathematical Sciences, Queensland
University of Technology, Queensland 4001, Australia.

http://dx.doi.org/10.1016/j.procs.2014.05.009
http://www.xilinx.com/publications/prod_mktg/sdnet/sdaccel-wp.pdf
http://www.xilinx.com/publications/prod_mktg/sdnet/sdaccel-wp.pdf
http://dx.doi.org/10.1109/TC.2010.278
mailto:hj.macintosh@hdr.qut.edu.au
mailto:david.warne@qut.edu.au
mailto:n.kelson@qut.edu.au
mailto:j.banks@qut.edu.au

References C462

mailto:t.farrell@qut.edu.au

mailto:t.farrell@qut.edu.au

	Introduction
	Background
	Tridiagonal linear systems
	Heterogeneous computing with OpenCL

	Parallel tridiagonal linear systems solvers
	Parallel cyclic reduction
	SPIKE
	Implementation using OpenCL

	Evaluation
	FPGA resource utilisation
	Compute performance
	Numerical accuracy
	Power utilisation

	Conclusion
	References

