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Influence of location, number and shape of
corrugations in slider bearings
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Abstract

The effects of location and shape of a localised corrugation on the
performance of a fixed inclined slider bearing are investigated numer-
ically, using a finite element method. It is shown that normal force
increases uniformly as the corrugation is relocated downstream in the
bearing gap, from being less than that of the smooth walled case to
being higher, while flow rate decreases, also uniformly. Corrugation
with the shape of rectangle waves produce largest changes in pressure
distribution, normal force and flow rate, relative to the smooth walled
case. This is followed by sine-wave corrugation, whereas triangle-wave
corrugation produces smallest changes. The number of corrugation
waves produces similar, but weaker, changes in normal force and flow
rate, to the corrugation volume, when this is used as a parameter
characterizing corrugation shape.
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1 Introduction

Influence of surface corrugation on the performance of slider bearings has
attracted the attention of many investigators [1, 2, 3, 4, 5, 6, 7, 8, 9]. However,
in these works, invariably corrugation extends over the full length (in the
direction of sliding motion) of the bearing gap. On the other hand, there can
be many situations where corrugation occurs not over the whole bearing, but
rather in some sections only. This could happen intentionally, or as a result
of manufacturing error, or some non-uniform flow pattern causing localized
erosion and corrugation, particularly if solid foreign particles are present. In
other words, corrugation of limited extent may arise.

In an effort to provide further understanding of lubrication flow in bear-
ings, this work considers the effects of corrugation of different shape, and
of very limited extent, on the performance of fixed-incline slider bearings,
using viscous fluids of a Newtonian type for lubricant. A finite element nu-
merical method is used for computation of the flow under non-isothermal
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conditions. Also, unlike many previous works where often approximations
of a Reynolds type [3, 4, 5, 6, 9], or to a lesser extent, approximations of a
Stokes type [7, 8] have been used, no simplifying assumptions will be made
in the present study.

2 Mathematical model and numerical

method

The modelled flow domain, which is two-dimensional and corresponds to a
slider bearing’s fluid film (or gap) with rectangular coordinates x and y, is
shown diagrammatically in Figure 1. In this figure the lower base surface is a
smooth plane which slides in the x-direction at constant speed ub. The gap’s
upper, inclined surface is stationary and has a corrugated section. In the
x-direction, the flow domain is bounded at coordinates xi at the inlet, and
xo at outlet. The flow domain’s inlet height is hi, and its outlet height ho.

The corrugated section of the stationary, inclined surface starts with an
x-coordinate xs, and extends over a distance d. The gap height corresponding
to a smooth inclined surface at xs is hs.

Corrugation is in the form of regular waves of amplitude a, and with wave
shape of triangle, sine function and rectangle. A whole number n of wave
cycles cover the corrugated section. Here, only small values for n have been
considered; namely only n = 1, 2 and 3 are used, with n = 0 being the special
case of smooth wall.

Thus in terms of x-coordinates, the inclined surface is smooth from xi to
xs, corrugated from xs to (xs + d) then smooth again to xw. This inclined
surface is followed immediately by a very short section with parallel lower
and upper walls between xw and xo. This short section with uniform height
is incorporated in the model to help with the imposition of correct veloc-
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Figure 1: Slider bearing geometry with corrugated inclined surface. See
Section 2 for explanation of symbols.
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ity boundary condition at outlet of the flow domain, as explained below in
relation to boundary conditions.

In this work, the standard units used will be mm, g, s and ◦C. Referring
to Figure 1, the following dimensions and coordinates are used: d = 1mm,
length of corrugated section; hi = 0.16mm; ho = 0.10mm; sh = hi − ho =
0.06mm, shoulder height; xi = 0 ; xw = 30mm; xo = 30.03mm; l = xo−xi =
30.03mm, bearing length; y-coordinate is measured from the sliding base
plane; ub = 6000mm/s; xs, hs, a and n are as defined above; and corrugation
wavelength is λ = d/n .

From these dimensions, the mean angle between the inclined and sliding
surfaces is tan−1(0.06/30) = 0.002 rad.

Fluid properties, which correspond to an oil, have been adopted from
Frêne et al. [10]. The following properties are assumed to be constant: Den-
sity ρ = 8.60 × 10−4 g/mm3 (860 kg/m3); Specific heat capacity c = 2 ×
109 mm2/s2 ◦C (2000 J/kg ◦C); Thermal conductivity k = 1.3×105 gmm/s3 ◦C
(0.13W/m ◦C).

Viscosity µ varies exponentially with temperature T (in ◦C) according
to the relation [10] µ = µoe

−α(T−β) , where β = 30◦C is the fluid’s “base”
temperature, µo = 0.03934 g/mm s the fluid viscosity at base temperature
(note: 1 g/mms = 1 Pa s), and α = 0.034 (◦C)−1 fluid viscosity’s exponential
coefficient.

Note that when it is desired to neglect the effects of temperature upon
the flow field, α is set to 0, and the corresponding case is called “isothermal”
here. In fact, as will be explained below in Section 3, all computational
results are presented for this “isothermal” case only. However, the numerical
procedure has been developed for the more general, non-isothermal situation.

The mathematical model used is that for a steady, two-dimensional flow
of incompressible, Newtonian fluids without body forces.
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The corresponding governing equations are those of conservation of mass
and momentum, and balance of energy, in full. In the usual notation, these
equations in rectangular coordinates are [11]: Conservation of mass,

∂u

∂x
+

∂v

∂y
= 0 ;

Conservation of momentum,

ρ
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u
∂u

∂x
+ v

∂u
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)
= −∂p
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(
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;

where u and v are respectively the velocity components in x and y direction,
p pressure, and T temperature. Note that, as mentioned above, the sliding
motion is in the x direction, and y is thus the “normal” direction.

Note also that for a Newtonian fluid and in Cartesian component form,
the stress tij is related to pressure and strain rates by

tij = −pδij + µ

(
∂vi

∂xj

+
∂vj

∂xi

)
,

where vi is the velocity in the xi direction, and δij the Kronecker delta.

Boundary Conditions Referring to Figure 1 and using standard notation,
the following boundary conditions are used:
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1. At inlet to the flow domain (x = xi): a profile of the normal (y-
direction) velocity v is prescribed according to the theoretical for-
mula [12]

vl

ubsh

=

(
Y 2

H4
i

)
(Y −Hi) (3Hp − 2Hi) ,

where Ho = ho/sh , Y = y/sh , Hi = hi/sh , and Hp = 2Ho(1+Ho)/(1+
2Ho) . Using the parameter values appropriate to this work, we have
Y = y/0.06 , Hi = 1.6667 , Ho = 2.6667 , Hp = 2.0513 ; and v is thus
v = 9.0052× 10−3uby

2[(y/0.06)− 2.6667] .

Also temperature is uniform and set at “base” value: T = 30◦C

2. On the stationary, inclined upper surface: non-slip condition and con-
stant temperature at “base” value u = v = 0 , T = 30◦C. Note that, as
mentioned above, this inclined surface has a corrugated section starting
at xs

3. At exit of the considered flow domain (x = xo): zero y-direction velocity
and zero normal stress in x-direction v = 0 , txx = 0 . Note that normal
(y-direction) velocity v is zero thanks to the upper and lower bounding
surfaces being parallel, as shown in Figure 1.

No thermal boundary condition is imposed on this end, thus the solu-
tion attempts to make ∂T/∂z = 0 here.

4. On the sliding base surface: x-direction velocity equal to the sliding
speed and zero velocity in y-direction; and constant temperature at
“base” value u = ub ; v = 0 ; T = 30◦C.

A finite element scheme based on the Galerkin discretisation procedure is
used. The numerical method used has been amply verified before, with non-
trivial problems in the areas of extrusion, wire-coating, and free convection
having been solved [13, 14, 15], in addition to simpler problems for which
analytical solutions are known. With the present problem, good agreement
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with available theoretical solutions [12] has been obtained; this is presented
and discussed in the Results and Discussion section below.

Grid patterns of 10 quadrilateral elements in the normal (y) direction by
243 elements in the sliding (x) direction (11× 244 grid points), and 15× 212
are used. Figure 2 shows an example of a grid pattern used.

Grid convergence tests have been carried out to ascertain the adequacy
of the patterns used.

Numerical convergence has been ensured to be excellent. Convergence is
verified using the following measure of variation covering the whole flow field
ε = |wk+1−wk|/(1 + |wk+1|) , where wk is the value of the parameter w after
the kth iteration; the parameters considered are the two velocity components,
pressure and temperature. Here we have followed Gill el al. [16] who suggest
an analogous measure of error.

In this work, ε is less than 10−7 at convergence.

Computation is done on a Sun Enterprise 3000 machine, running a unix
operating system. Double precision (64 bits) is used throughout.

3 Results and discussion

Computation has been performed with a sliding base speed ub = 6000mm/s.
Corrugation is in the form of regular waves. Three wave patterns, namely
triangular, sinusoidal and rectangular, have been considered. Computation
is also done for the smooth walled case which is used as a reference. Other
changing parameters are the corrugated section’s location (indicated by its
starting location xs), number of cycles n and amplitude a of the corrugation’s
waves. Corrugated section length is kept constant at 1mm.

In all computational results presented below, the viscosity’s exponential
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Figure 2: Grid pattern of a representative case.
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Table 1: Smooth walled, isothermal case; ub = 6000mm/s
Theoretical Computational

Maximum pressure, pmax [Pa] 1.532× 105 1.538× 105

x-coordinate of pmax, xmax [mm] 18.48 18.46
Normal force per unit width, F [mN/mm] 3.000× 106 3.011× 106

Flow rate per unit width, Q [mm2/s] 369.2 368.7

coefficient α is kept at zero. Temperature change thus has no effects on the
flow field. Computation was also performed with α = 0.034 (◦C)−1, but the
corresponding temperature change is very small, and thermal effects have
been seen to be negligible.

It is noted that with ub = 6000mm/s, the modified Reynolds number
Rem = ρub(ho)

2/µol is 0.044 [12]. However, if the conventional definition
Re = ρubhi/µo is used for Reynolds number, then the bulk flow’s value is
quite high, being 21.

Comparison between computational results and theoretical predictions [12]
for the reference smooth walled, isothermal case has been carried out, and
the agreement is very good. This is shown in Table 1. The agreement further
reinforces confidence in the numerical method used.

3.1 Effects of corrugation shape

Three corrugation shapes, namely triangular, sinusoidal and rectangular,
have been considered, and their effects on pressure distribution, load car-
rying capacity and flow rate, have been compared. Figure 3 shows the effects
of corrugation shape on pressure distribution along the stationary, inclined
surface for representative cases with corrugations located close to the gap
exit, at xs = 28.5 mm or xs/l = 0.9491 . The figure shows that relative to
the reference smooth walled case, an increase in pressure is produced with
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all three shapes. But corrugations with shape of rectangle waves produce a
much larger increase than the other two shapes; and triangular corrugations
result in the smallest change.

Integration of the pressure distribution along the inclined surface gives
normal force, which is a bearing’s load supporting capacity. Influence of
corrugation shape on normal force is shown in Figure 4. It can be seen that
rectangle waves produce the largest change in the normal force relative to
the smooth walled situation, followed by sinusoidal corrugation. Triangular
waves result in the smallest change.

Figure 5 shows change in flow rate with respect of the smooth walled case.
It can be seen that all corrugations result in reductions in flow rate (negative
change). And in similarity with the normal force, rectangle waves produce
largest change (most negative) in flow rate, whereas the least change occurs
with triangle waves.

Note that in the two Figure 4 and 5, one horizontal axis has units of
(Volume of corrugation waves)/(Volume of triangular corrugation waves).
For waves with the same amplitude a and wavelength λ, the ratio of volumes
of corrugation (per unit depth, in the direction perpendicular to the page)
between a sine wave and a triangle wave is (considering only a half wave
cycle) ∫ λ/2

0
a sin(2πx/λ) dx

(1/2)(a× λ/2)
= 1.273 .

On the other hand the (Volume of a rectangle wave)/(Volume of a triangle
wave) = (a×λ/2)/[(1/2)(a×λ/2)] = 2 . Thus Figures 4 and 5 also indicate
that corrugation with a larger volume gives rise to larger changes in both
normal force and flow rate, relative to the smooth walled case.
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3.2 Effects of corrugation location

Corrugation location is primarily indicated by the corrugated section’s start-
ing position whose x-coordinate is xs. Figure 4 shows that as the corrugations
are relocated further downstream, from being near the gap inlet to being near
its outlet, normal force increases uniformly, from being lower than the smooth
walled case (negative change) to being higher (positive change).

On the other hand, as the corrugations are relocated further downstream
toward the gap exit, flow rate decreases, also uniformly, making the already
negative change relative to the smooth walled case more pronounced. This
is shown in Figure 5.

The enhancing effects of corrugations’ downstream location on normal
force, and its depressing effects on flow rate, can further be seen in Figures 6
and 7. These figures also show the expected reinforcing influence of corru-
gation amplitude a, in the sense that a larger a value gives rise to larger
changes in normal force and flow rate, relative to the smooth walled case.

3.3 Effects of the number of corrugation waves

Effects of the number n of corrugation waves on normal force and flow rate
are presented in Figures 8 and 9. Comparison between Figures 8, 4 and 6
indicates that n has similar influence on normal force to the corrugation shape
and corrugation amplitude. Thus, the effects of higher n value correspond to
those of corrugation shape with larger volume, and of corrugation with larger
amplitude. Similar remarks also apply to flow rate, as comparison between
Figures 9, 5 and 7 shows.

On the other hand, while trends in the changes (relative to the smooth
walled case) are similar, Figures 8 and 9 also indicate that the influence of n
is milder than that of corrugation shape, location or amplitude. Thus, as n
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increases from 1, corresponding changes in the normal force and flow rate are
fairly small.

4 Conclusions

Influence of corrugation shape, location and the number of corrugation waves
(when this number is very small and corrugation in the form of regular waves)
on the performance of fixed-incline slider bearings has been investigated nu-
merically, using viscous fluids of a Newtonian type for lubricant and a finite
element method.

Of the three corrugation shapes considered, it has been seen that rectangle
waves produce largest changes in pressure distribution, normal force and
flow rate, relative to the smooth walled case. This is followed by sine waves,
whereas triangle waves produce smallest changes. The number of corrugation
waves produces similar, but weaker, trends in the changes of normal force
and flow rate, to the corrugation volume, when this is used as a parameter
characterizing corrugation shape.

It is also seen that normal force increases uniformly, from being less than
that of the smooth walled case to being higher, as corrugations are relocated
downstream, from being near the gap inlet to being near its exit. On the
other hand, flow rate decreases, also uniformly, as corrugations are relocated
downstream, toward the gap exit.
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