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Block symplectic Gram–Schmidt method
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Abstract

For large scale linear problems, it is common to use the symplectic
Lanczos method which uses the symplectic Gram–Schmidt method to
compute symplectic vectors. However, previous studies showed that
the selection process of the parameter in the symplectic Gram–Schmidt
method is flawed, as it results in a partially destroyed J-orthogonality
of the J-orthogonal matrix. We explore a block type symplectic Gram–
Schmidt method and a new condition for the reorthogonalization to
maintain J-orthogonality and to more accurately compute symplectic
factorization. Applying the block size scheme to this method, we
develop a new procedure for computing symplectic vectors.
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1 Introduction

The orthogonalization process of qr factorization by the Gram–Schmidt (gs)
method is arguably one of the most important processes in linear algebraic
computation and there are numerous studies on this subject [4, 7, 8, 11, 12].

Orthogonalization with the gs method is also used in symplectic methods
which are structure-preserving and are used to solve eigenvalue problems
arising from special matrices like the Hamiltonian matrix. In scientific com-
putation, the eigenvalue problem of the Hamiltonian matrix is an important
and well-studied topic [1, 2, 6]. One applications of the symplectic method is
solving the Ricatti equation arising from control theory [3, 5]. The symplectic
method enables us to compute eigenvalues quickly by using the structure
of a matrix, unlike the Householder qr or Lanczos methods. For a given
coefficient matrix A, the symplectic Gram–Schmidt (sgs) method computes
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the symplectic matrix S and triangular matrix R which satisfy A = SR . Since
this method preserves the important structure of A, it enables us to comupute
eigenvalues more rapidly. According to Van Loan [6], for a Hamiltonian
matrix, the sgs requires only about 25% of the floating point operations of
the Householder qr method.

The sr procedure is very similar to the Householder qr algorithm. Salam [10]
proved that sr is equivalent to the modified symplectic Gram–Schmidt (msgs)
method. Another method is sr factorizaton by the classical symplectic Gram–
Schmidt (csgs) method [9]. However, there are fewer numerical experiments
documented on the sgs compared to the gs decomposition for the qr, Arnoldi
and Lanczos methods. In Section 2, we summarize the sgs method.

In this article we explore the possibility of using the block symplectic Gram–
Schmidt (bsgs) method by blocking the csgs method. Section 3 proposes
the bsgs method. The block Gram–Schmidt (bgs) algorithm is a standard
generalization of the classical Gram–Schmidt algorithm. Stewart [12] and
Matsuo et al. [7] showed how the computation time of the qr factorization
is shortened by employing the bgs method. By blocking the csgs method,
the bsgs method should enable a more rapid sr factorization. However,
since the optimal block size m is not consistent when employing the bgs
method, it is necessary to determine m. When the bgs method is used,
m must be determined accurately through trial and error. Section 4 and
Section 5 discuss numerical experiments which evaluate the effectiveness of
our proposed algorithm.

2 Symplectic Gram–Schmidt method

The first step is to define the matrix

J =

[
0n In
−In 0n

]
∈ R2n×2n , (1)
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where JT = J−1 = −J . Then, the J-product is defined for the vectors x,y ∈ R2n

by
〈x,y〉J = xTJy . (2)

Let
MJ = JTMTJ , (3)

and let matrix S be symplectic or J-orthogonal when

SJS = JTSTJS = I . (4)

The elementary symplectic factorization (esr) which J-orthogonalizes X1 =
[x1, x2] into the J-orthogonal matrix S1 = [s1, s2] , for xi ∈ Rn with i = 1, 2 ,
is 

s1 = x1/r11 ,
y = x2 − r12s1 ,
r22 = sT1Jy ,
s2 = y/r22 ,

(5)

where r11 and r12 are arbitrary real values. There are several way to choose
r11 and r12:

• esr1, r11 = ‖x1‖ , r12 = 0 ,

• esr2, r11 = ‖x1‖ , r12 = sT1x2 ,

• esr3, r11 = ‖xT
1Jx2‖ , r12 = 0 .

According to Salam [10], the choice of r11 and r12 is an influential factor in the
accuracy of the J-orthogonality of the sr factorization and the esr2 method
is the most stable because s1 and s2 are orthogonal to each other.

From equation (5),

X1 = S1R1 , R1 =

[
r11 r12
0 r22

]
, (6)
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Algorithm 1: Elementary sr factorization.
Data: X1 = [x1, x2]
Result: S1 = [s1, s2] , R1 = [r11, r12, 0, r22]

1 begin
2 Choose r11 ∈ R , s1 = x1/r11 ;
3 Choose r12 ∈ R , y = x2 − r12s1 ;
4 r22 = sT1Jy ;
5 s2 = y/r22 ;
6 end

where S1 is the J-orthogonal matrix and R1 is an upper triangular matrix.
Algorithm 1 describes the esr method.

The csgs algorithm is very similar to the cgs algorithm. For an 2n ×
2n matrix X = [X1,X2, . . . ,Xn] , the csgs method factorizes X into the J-
orthogonal matrix S and upper triangular matrix R through

H = SJXi , (7)
Yi = Xi − SH , (8)
Yi → SiRi , (by esr) (9)
S = [S,Si] , R← R,Ri,H . (10)

From equations (7) and (10) it is seen that the csgs method is very similar to
the cgs method. However, in the csgs method the vectors Y are normalized
by the esr instead of by the norm of Y vectors. Repeating equations (7)–(10)
for i = 1, . . . ,n results in

X = SR . (11)

The J-orthogonalized vectors S1, . . . ,Sn, with Si = [s2i−1, s2i] , in the csgs
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method satisfy

sT2i−1Js2i = 1 , i = 1, . . . ,n , (12)

SJ
iSj =

{
0, i 6= j ,
1, i = j .

(13)

3 Block symplectic Gram–Schmidt method

In this section, a block csgs method is explored for speeding-up sr fac-
torization. First, matrix X in equations (7)–(10) is replaced with Xblock =
[x1, x2, . . . , xn] and

H = SJXblocki
, (14)

Yi = Xblocki
− SH . (15)

Using equations (14) and (15), a matrix Xblock is J-orthogonalized against
the previous J-orthogonalized matrix S. However, these steps alone are not
enough to create a J-orthogonalized matrix because the vectors in Y are
not J-orthogonalized against each other. This makes it necessary to add one
more step to create J-orthogonalization for vectors in Y:

Yi → SiRi , (by csgs) (16)
S = [S,Si] , R← R,Ri,H . (17)

By relation (17), Y is J-orthogonalized. Algorithm 2 gives the bsgs algorithm.

3.1 Re-orthogonalization

According to Stewart [12], employing full re-orthogonalization is enough for
maintaining the orthogonality of computed vectors when employing the gs
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Algorithm 2: Block symplectic Gram–Schmidt algorithm.
Data: X=[Xblock1

, . . . ,Xblockn
]

Result: S = [S1, . . . ,Sn] , R
1 begin
2 Xblock1

= S1R(1 : 2, 1 : 2) ;
3 for i = 2 : n do
4 for j = 1 : i− 1 do
5 Hi,j = SJ

jXblocki
;

6 end
7 Yi = Xblocki

−
∑j=i−1

j=1 SjHi,j ;
8 R(1 : 2(i− 1), 2i− 1 : 2i) = Hj,i ;
9 Yi → SiRi by csgs method;

10 R(2i− 1 : 2i, 2i− 1 : 2i) = Ri ;
11 end
12 end

method. The condition for re-orthogonalization is

‖ŷ‖ > 1

2
‖x‖ . (18)

If an orthogonalized vector ŷ does not satisfy this condition, then re-orthogonal-
ization is employed. However, when running the sgs method, the condition
may fail because the norms of J-orthogonalized vectors tend to increase as the
sgs steps proceed. This is because the sgs method is unable to normalize
computed vector ŷ. To address this issue the esr method must be utilized
instead. The s2i−1 vector satisfies

‖s2i−1‖ > 1 . (19)

Even though the computed vector ŷ lacks J-orthogonality, ŷ satisfies con-
dition (18). This makes it possible to propose a new condition for re-
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orthogonalization instead of using condition (18):

‖ŷ‖ 6 1

2
‖x‖ . (20)

Through this condition, the norm of the computed vectors is controlled, and
re-orthogonalization is employed.

3.2 Optimal block size

Through a blocking procedure, it is possible to compute sr factorization
quickly. However, the computation time is dependent on block size m.
Moreover, since the optimal block size m is not consistent when employing
the bsgs, it is mandatory to determine m. There is no unique m for any
matrix X when the bsgs is used, and it is necessary to determine m accurately,
through trial and error.

The next step is to determine the optimal block size. Algorithm 3 gives the
method used to estimate optimal block size. The total bsgs computation
time with block size m is approximated from a polynomial function using
sample points b[i] which are estimated by observing the sample computation
time a. We determine that the m which minimizes the approximated bsgs
computation time is the optimal block size. Matsuo et al. [8] provided more
details for determining the block size.

4 Numerical experiments

In this section the bsgs with Algorithm 2 and Algorithm 3, csgs and msgs
are tested [9]. The numerical environment is

• Intel(R) Xeon(R) cpu E3-1270 V2 3.50GHz;

• 16GB memory.
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Algorithm 3: The new method for estimating optimal block size.
Data: X ∈ Rn×n

Result: m
1 begin
2 for i = 1 : 5 do
3 mi := 2i−1 ;
4 for j = 0 : 1 do
5 start:=get time;
6 Block Symplectic Gram–Schmidt step for Xblock (Algorithm 2);
7 end:=get time;
8 tij := end− start;
9 end

10 a = (ti0 − ti1)/mi ;
11 b[i] := (1/2)n2a+ ti0 − a(h−m) ;
12 for j = 5 : 1 do
13 A[ij] = mj−1

i ;
14 end
15 end
16 solve Ax = b ;
17 f(m) := x1m

4 + x2m
3 + x3m

2 + x4m+ x5 ;
18 solve m := minm∈[0, 12N]f(m) ;
19 end
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4.1 Experiment one

Firstly, it is shown that the J-orthogonality of the sgs method is unstable
and how our new re-orthogonalization condition is effective in addressing this.
These numerical experiments were implemented in Matlab2013b and the test
matrices were Hamiltonian matricesH with sizes 20×20, 40×40, . . . , 200×200
with random values. The cgs and the csgs methods were employed to
calculate orthogonality and J-orthogonality of the computed matrices by,
respectively,

‖I−QTQ‖2 , ‖I− SJS‖2 .. (21)

Figures 1 and 2 show the numerical results. The results suggest that the J-
orthogonality of the csgs method is very unstable. For small size problems the
accuracy of the J-orthogonality is approximately 10−10. However, for a 200×
200 Hamiltonian matrix the accuracy of the J-orthogonality is unacceptable.
We have not identified the reason for this problem with large matrices, but it
is possible that calculation errors are caused by the esr increasing the norm
of the computed vector.

Figure 2 illustrates the accuracy of the J-orthogonality of csgs with re-
orthogonalization condition (20), and it is much improved compared to
Figure 1. It seems that the orthogonalization condition works for the csgs
method.

4.2 Experiment two

The effectiveness of the bsgs method is illustrated in this section. These
numerical experiments were implemented in C language with double precision
and the test matrices used were the Hamiltonian matrices H1 ∈ R200×200 and
H2 ∈ R2000×2000 with random values. The sr factorization employed the bsgs,
csgs and msgs methods and re-orthogonalization was implemented in each
procedure.
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Figure 1: J-Orthogonality of the csgs method.

Table 1: Experiment 1.
Method m tm Accuracy
csgs 2 0.104 8.70× 10−6

msgs 2 0.107 4.65× 10−6

bsgs 10 0.039 2.80× 10−6

Tables 1 and 2 show results for the numerical experiments. In these tables
‘Accuracy’ refers to the calculation accuracy of the J-orthogonality by equa-
tion (21) and tm is the computation time for block size m. bsgs-m refers
to the bsgs method with our proposed method for determining block size
(Algorithm 3).
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Figure 2: J-Orthogonality of the csgs with re-orthogonalization.

Table 2: Experiment 2.
Method m tm Accuracy
csgs 2 21.24 1.55× 10−4

msgs 2 21.40 1.03× 10−4

bsgs 40 2.50 3.74× 10−5

bsgs 100 3.21 7.14× 10−5

bsgs-m 72 2.72 4.48× 10−5
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From Table 1 we see that the bsgs method is the fastest and has the highest
accuracy in terms of J-orthogonality. This is because, after blocking X, we
calculate the computation with Basic Linear Algebra Subprograms (blas).
The accuracy of the bsgs method is significantly better than the accuracy of
the csgs method.

From Table 2 we again see that the bsgs method is the fastest and has the
highest accuracy in terms of J-orthogonality. The bsgs method is approx-
imately ten times faster than the csgs and msgs methods. The accuracy
of the bsgs method is significantly better than that of the csgs and msgs
methods. Since H2 is larger than H1, the sr factorization of matrix H2 is
more unstable than that of matrix H1. The bsgs-m is not the fastest in
Table 2, but the bsgs-m performed only 10% slower, more or less, than the
fastest method.

5 Conclusion

The proposed bsgs method blocks the csgs method to speed-up computation,
and combines this with determining the optimal block size. Determining the
block size is necessary because the computation time of the bsgs method
changes significantly depending on block size.

Section 4 presented numerical experiments which show the effectiveness of the
re-orthogonalization condition of the bsgs method. It is clear that this new
condition worked for the sgs method. Our proposed method is much faster
and more accurate than either the csgs or the msgs method. And in terms
of determining block size, the bsgs method selects block size automatically.

In future studies it will be useful to analyze J-orthogonality and study how
this proposed method works when dealing with a large scale problem.



References C429

References

[1] G. Ammar and V. Mehrmann. On Hamiltonian and symplectic
Hessenberg forms. Linear Algebra Appl. 149:55–72, 1991.
doi:10.1016/0024-3795(91)90325-Q C417

[2] P. Benner and H. Fassbender. An implicitly restarted symplectic
Lanczos method for the Hamiltonian eigenvalue problem. Linear Algebra
Appl. 263:75–111, 1997. doi:10.1016/S0024-3795(96)00524-1 C417

[3] A. Bunse-Gerstner and V. Mehrmann. A symplectic QR like algorithm
for the solution of the real algebraic Riccati equation. IEEE T. Automat.
Contr. 31:1104–1113, 1986. doi:10.1109/TAC.1986.1104186 C417

[4] G. Rünger and M. Schwind. Comparison of different parallel modified
Gram–Schmidt algorithms, Euro-Par 2005, Lecture Notes in Computer
Science 3648:826–836, 2005. doi:10.1007/11549468_90 C417

[5] H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. Wiley,
1972. http://dl.acm.org/citation.cfm?id=578807 C417

[6] C. Van Loan. A symplectic method for approximating all the
eigenvalues of a Hamiltonian matrix. Linear Algebra Appl., 61:233–251,
1984. doi:10.1016/0024-3795(84)90034-X C417, C418

[7] Y. Matsuo and T. Nodera. The optimal block-size for the block
Gram–Schmidt orthogonalization. J. Sci. Tech., 49:569–584, 2011. C417,
C418

[8] Y. Matsuo and T. Nodera. An Efficient Implementation of the Block
Gram–Schmidt Method. CTAC2012, ANZIAM J., 54:C394–409, 2013.
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/
view/6327 C417, C423

http://dx.doi.org/10.1016/0024-3795(91)90325-Q
http://dx.doi.org/10.1016/S0024-3795(96)00524-1
http://dx.doi.org/10.1109/TAC.1986.1104186
http://dx.doi.org/10.1007/11549468_90
http://dl.acm.org/citation.cfm?id=578807
http://dx.doi.org/10.1016/0024-3795(84)90034-X
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/6327
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/6327


References C430

[9] A. Salam. On theoretical and numerical aspects of symplectic
Gram–Schmidt-like algorithms, Numer. Algorithms 39:437–462, 2005.
doi:10.1007/s11075-005-0963-2 C418, C423

[10] A. Salam and E. Al-Aidarous. Equivalence between modified symplectic
Gram–Schmidt and Householder SR algorithms. BIT Numer. Math.,
54:283–302, 2014. doi:10.1007/s10543-013-0441-5 C418, C419

[11] S. J. Leon, A. Björck and W. Gander. Gram–Schmidt orthogonalization:
100 years and more. Numer. Linear Algebra Appl. 20:492–532, 2013.
doi:10.1002/nla.1839 C417

[12] G. W. Stewart. Block Gram–Schmidt orthogonalization, SIAM J. Sci.
Comput., 31:761–775, 2008. doi:10.1137/070682563 C417, C418, C421

Author addresses

1. Yoichi Matsuo, School of Fundamental Science and Technology,
Graduate School of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan.
mailto:matsuo@math.keio.ac.jp

2. Takashi Nodera, Department of Mathematics, Faculty of Science and
Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama,
Kanagawa, 223-8522, Japan.
mailto:nodera@math.keio.ac.jp

http://dx.doi.org/10.1007/s11075-005-0963-2
http://dx.doi.org/10.1007/s10543-013-0441-5
http://dx.doi.org/10.1002/nla.1839
http://dx.doi.org/10.1137/070682563
mailto:matsuo@math.keio.ac.jp
mailto:nodera@math.keio.ac.jp

	Introduction
	Symplectic Gram–Schmidt method
	Block symplectic Gram–Schmidt method
	Re-orthogonalization
	Optimal block size

	Numerical experiments
	Experiment one
	Experiment two

	Conclusion
	References

