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Abstract

The logistic model has long been used in ecological modelling for its
simplicity and effectiveness. Variations on the logistic model are prolific
but, to date, there are a limited number of models that incorporate
the stochastic nature of the carrying capacity. This study proposes a
modification to the logistic model to incorporate a second differential
equation which describes the changes in the carrying capacity, thus
treating the carrying capacity as a state variable. The carrying capacity
is modelled via a stochastic differential equation that accounts for
stochastic (‘noisy’) variations in the finite resources that the population
relies on. The extinction probability distribution, expected solution
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paths, variance of the solution paths, and distribution of the population
are computed using the Monte Carlo method.
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1 Introduction

The origins of population growth models are traced back to Malthus’ in-
fluential exponential model and later to Verhulst’s logistic model [1]. The
logistic model acknowledges the reality of finite resources that cannot support
exponential growth indefinitely. Central to this limitation is the concept of a
‘saturation level’ or carrying capacity—the maximum population level that
an environment can support given finite resources [2]. The logistic equation is

dNt

dt
= rNt

(
1−

Nt

K

)
, (1)
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where Nt is the population size at time t, r is the intrinsic growth rate
and K is the carrying capacity. The logistic equation has been adapted and
modified for over a century. Tsoularis and Wallace [3] summarise some of
these adaptations.

The carrying capacity is assumed to be constant in population growth models
used for resource assessment and management [4]. However, changes to the
carrying capacity do occur due to both exogenic and endogenic processes [5].
Cushing [6] and Coleman [7] recognised the need to treat the carrying capacity
as a function of time to model population dynamics in an environment
that undergoes change. Most populations experience fluctuations in their
environment due to seasonal change [8].

The simplest approach is to specify some time dependent function for the
carrying capacity that reflects the observed behaviour of the changing envi-
ronment [1, 9]. However, this approach is quite limiting as it does not allow
for the more realistic portrayal of the environment, and therefore its carrying
capacity is not “shaped by processes and interdependent relationships between
finite resources and the consumers of those resources" [10]. To mitigate this
issue, Safuan et al. [11, 12, 13, 14] developed models that treat the carrying
capacity as a state variable, thereby coupling the carrying capacity directly
to the population.

The variations to the logistic equation mentioned thus far have their ap-
plications; however, there are many external environmental effects like fire,
drought, floods and contamination of water resources, that also need to be
accounted for. By adding stochasticity (noise) to the logistic equation, it is
possible to account for these anomalous impacts on population dynamics that
deterministic models often ignore.

How stochasticity is incorporated in population models is a modelling issue.
One approach is to explicitly write the carrying capacity as consisting of
a deterministic and a stochastic term [15]. More generally, environmental
fluctuations are modelled by adding noise to the competition term (reciprocal
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of K) leading to the stochastic differential equation (sde) [16]

dNt = rNt

(
1−

Nt

K

)
dt+ rσN2

t dWt , (2)

where Wt is a standard Weiner process with mean E[Wt] = 0 and variance
V[Wt] = t . The noise intensity is σ. In Section 2 we propose a different
approach by treating the carrying capacity as a state variable.

2 The model

The simplest model that treats the carrying capacity as a state variable is

dNt

dt
= rNt

(
1−

Nt

Kt

)
, Nt=0 = N0 , (3)

dKt = σdWt , Kt=0 = K0 . (4)

Equation (3) is just the standard logistic equation (1) describing the growth
of a population as it responds to the fluctuations of Kt. Equation (4) defines
the carrying capacity by a simple sde, where σ is the intensity of the noise.
Equation (4) is solved independently from (3), the solution is

Kt = K0 + σWt . (5)

Substituting (5) into (3), we get

dNt

dt
= rNt

(
1−

Nt

K0 + σWt

)
. (6)

Three different realisations (simulations) of (5) are shown in Figure 1. Al-
though this model appears simple, it may find useful applications in certain
ecosystems. For example, Wt may be a proxy variable for excess rainfall over
an ecosystem and then average rainfall sustains the carrying capacity at K0.
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Figure 1: Three different realisations of Kt with K0 = 10 and σ = 0.4 .

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

t

Kt

 

 

When Wt > 0 , above average rainfall contributes to an increase in the carry-
ing capacity. On the other hand, when Wt < 0 , below average rainfall results
in a decrease in the carrying capacity. Figure 1 shows a realisation (green)
with a deteriorating carrying capacity that is a result of successive periods of
below average rainfall: the ecosystem is experiencing a drought. If Kt = 0 ,
then the environment cannot sustain a population, leading to the population’s
extinction. Predicting extinction times and their causes is very important for
conservation [17].
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3 Solution for the population size

An exact solution to (6) is currently not known. A numerical solution
can be obtained once Wt is generated. Alternatively, the method used
here is to numerically solve the coupled sdes (3) and (4) using the Euler–
Maruyama method. Higham [18] described this method and its strong and
weak convergence in detail. Here we use graphical data analysis methods,
especially quantile-quantile (qq-) plots to investigate the distributions of
Kt and Nt. A step size of ∆t = 0.01 was used. Smaller step sizes did not
make any difference to the qq-plots. However, in generating several thousand
simulations, there was a noticeable increase in computer running time when
using smaller step sizes. A step size of 0.01 seemed a reasonable compromise.

3.1 Varying the intrinsic growth rate

From the differential equation for Nt we have: N ′
t < 0 if Kt < Nt ; N ′

t = 0

if Kt = Nt ; and N ′
t > 0 if Kt > Nt . This means that Nt will tend to

follow Kt—when Kt is higher, Nt will increase towards Kt, and when Kt is
lower, Nt will decrease towards Kt. In the case where the intrinsic growth
rate r is large, the rate of change of Nt will be large in magnitude so it will
follow Kt closely. The solution for Nt is smoother for smaller values of r—the
population is less affected by rapid changes to the carrying capacity.

3.2 Expected solution path

SinceWt ∼ N(0, t) and as Kt is a linear transformation ofWt, Kt ∼ N
(
K0,σ2t

)
.

From an ecological perspective, this distribution is technically not correct
since Kt > 0 . The exact (conditional) probability density function for Kt > 0
is

PK(K, t | K0) =
1

σ
√
2πt

[
exp

(
−
(K− K0)

2

2σ2t

)
− exp

(
−
(K+ K0)

2

2σ2t

)]
. (7)
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Figure 2: The effect of varying r on the mean (left) and variance (right) of
the population with K0 = 10 , σ = 0.1 and N0 = 2 . In the top plots r = 0.2
and for the bottom plots r = 2 .
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Since Nt pursues Kt, this suggests that the population has (asymptotically) a
similar distribution to that of the carrying capacity: PN(N, t | N0) ≈ PK(K, t |
K0) . To investigate this we employed a Monte Carlo approach and calculated
the mean and variance from 2000 simulations. Figure 2 supports the idea
that the population has a mean and variance that closely match the mean
and variance of the carrying capacity. A smaller value of r does not affect the
mean asymptotically approaching K0, but does slightly reduce the variance.

4 Distribution of the population size

From the numerical simulations, beyond the initial transient behaviour, Nt

follows Kt closely. The expected value and variance of Nt also closely follow Kt.
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Figure 3: The qq-plots of distributions for Kt and Nt with K0 = 10 , r = 0.2
and N0 = 2 .
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This suggests that Nt and Kt may have the same distribution. To establish if
the distributions of Nt and Kt are the same, the qq-plots in Figure 3 were
produced for t = 100 and t = 400 with σ = 0.1 and σ = 0.4 . A qq-plot
is a non-parametric method for comparing two probability distributions by
plotting the quantiles against each other. The closer the quantiles on a qq-plot
are to a straight line, the more likely they belong to the same distribution.
For the given times and noise intensity σ, the distributions of Nt and Kt are
likely to be the same.

Using qq-plots, Figure 4 compares the distributions of Nt and Kt. For times
t = 100 and t = 400 with σ = 0.1 the distributions of Kt and Nt are likely to
be normally distributed. The quantiles for both Kt and Nt lie on the dashed
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Figure 4: The qq-plots showing if the distributions Kt and Nt are normally
distributed, with K0 = 10 , r = 0.2 and N0 = 2 .
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straight line. For small enough σ and large enough K0 the second term in (7)
is small and the assumption of normality holds true for a restricted amount
of time.

When σ = 0.4 (right plots of Figure 4), as time increases, the tails of the
qq-plots become noticeably less linear, especially for smaller standard normal
quantiles. This indicates that the distributions for Kt and Nt are skewed.
This is because, as time passes, more and more of the realisations of Kt, and
subsequently Nt, are truncated at zero instead of continuing into negative
values. The truncation is necessary as negative values for population and
carrying capacity have no physical meaning. This is seen from (7) which gives
PK(0, t | K0) = 0 .
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5 Distribution of extinction times

Recall that Kt = K0+σWt is a scaled Wiener process with mean K0. The first-
hitting time, when the carrying capacity reaches zero, is τ = inf {t : Kt = 0} ,
and is equivalent to τ = inf {t : Wt = −K0/σ} . For our problem, the
distribution of first-hitting times is well known and is [19]

fτ(t) =
K0

σ
√
2πt3

exp
(
−
K20
2σ2t

)
. (8)

Figure 5 compares the theoretical distribution of first-hitting times with the
numerically calculated equivalent. The simulations indicate that the first-
hitting times for Kt satisfy (8). Furthermore, extensive numerical simulations
indicated that the first-hitting times for Nt may be approximated by those
for Kt.

6 Conclusion

This study investigated the implications of coupling a simple sde describing
the random variations in environmental conditions to the standard logistic
equation. Through numerical simulations we showed that the population Nt

defined by (3) will always pursue Kt, suggesting that the distributions are
approximately the same. Beyond the transient, the means of Nt and Kt are
the same and the variance of the population is slightly reduced compared to
that of the carrying capacity: the reduction being larger for smaller values of r.
Nevertheless, for smaller values of r the population is not strongly affected by
the extremes that the carrying capacity may experience, thus the population
size remains more stable compared to populations with large r.

Furthermore, in our simulations we demonstrated that for small σ and large K0
the distribution for Kt is approximately normal. Since Kt > 0 the distribution
is certainly not normal. Both Kt and Nt are better approximated by a skewed
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Figure 5: The theoretical distribution function (curve) and the numerical
probability distribution function (histograms) of the first-hitting time for Kt
with K0 = 10 , r = 0.2 , N0 = 2 and σ = 0.1 .
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distribution, such as equation (7). A full analysis requires the construction
and solution of the Fokker–Planck equation associated with (3) and with
appropriate boundary conditions [19]. The analysis of the Fokker–Planck
equation would be formidable. It may be possible to make algebraic progress
in the cases where r is very large and when 0 < r � 1 . This is currently
under investigation. Further development in this area includes models for Kt
that are more realistic, such as ones that include both a deterministic and a
stochastic term.
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