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Abstract

Travel time data of road users collected by Bluetooth scanners are
of great value in traffic monitoring and planning. To estimate the travel
time of road users over a segment of road, discriminating between differ-
ent types of travellers is essential, but often overlooked by researchers.
This paper explores the feasibility of transport mode identification
using clustering methods. The performance of the k-means clustering
algorithm and the Gaussian mixture model is examined via an empirical
study of travel time data collected from road segments in the north
Brisbane region, Queensland, Australia. It is demonstrated that both
clustering methods are able to detect multiple transport modes and
produce travel time estimates that are close to reality. The methods
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and results provide a guideline for transport mode identification, and
may contribute to further issues related to traffic monitoring such as
forecasting and planning.

Subject class: 82C70; 91C20

Keywords: travel time, transport mode, crisp clustering, fuzzy cluster-
ing, Bluetooth data
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1 Introduction

Management of current roadways infrastructure and planning for maintenance
and future growth are important projects for local and state governments [15].
The maintenance and construction of new roads are large undertakings, re-
quiring considerable dedication of resources and potential disruption for many
users. Making decisions about these activities requires a good understanding
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of the patterns of usage for existing roadways and a means of planning and
estimating the likely impact of future additions or modification of the existing
network. For such purposes, research has been undertaken extensively to
estimate travel time on motorways or arterials [2, 3, 4, 10, 17, 18, 19, 23].

The issue of monitoring road use for ongoing planning and efficiency of the
road network in the state of Queensland was brought to the Mathematics
in Industry Study Group 2014 by the Queensland Department of Transport
and Main Roads (tmr). The tmr collects usage data by recording the
movement of media access control (mac) addresses from Bluetooth enabled
devices through sensors placed at major intersections throughout Queensland.
Tracking Bluetooth mac addresses has gained much interest as one of the most
cost effective ways of recording travel time [2, 3, 4]. mac ids of discoverable
Bluetooth devices being transported by road users, such as mobile phones or
the car systems designed to pair with user devices, are tracked by Bluetooth
mac scanners (bms), and the travel time are easily recorded by matching the
mac ids from one bms to another. These records are referred to as the node-
to-node travel time data, which measure the time difference between two bms
at two nodes collecting identical mac address information. According to the
tmr, these data are collected from around 20% of road users, which represent
a sample of the actual traffic and are used to make inference about travel
times throughout the network. The principles of Bluetooth communication
and bms data acquisition have been studied [2, 3].

The current travel time system of the tmr calculates a single travel time
between nodes on the road network and delivers a single average result per
period of calculation. This is carried out by computing an average of all
observations after removing the outliers, where the outliers include those
records below a pre-determined travel speed (usually 5 km/h), those records
that appear off route, and those detected by the median absolute deviation
(mae) method [4]. However, travel time estimates obtained in this way may
be biased [3]. The primary reason is that there are multiple transport modes
of road users such as cars, heavy vehicles, buses, cyclists and pedestrians, but
the bms are not able to identify them as no information about the type of



1 Introduction M98

the mode and number of devices within one mode is available. Although it
is evident that means or medians of node-to-node travel time data tend to
achieve good performance when concentrating on only one type of road users
(e.g., cyclists [19], pedestrians [17], or motor vehicles on a freeway [18]), the
reliability of means or medians when multiple transport modes are present is
questionable. Since different transport modes are associated with potentially
different patterns in travel times, data collected from different types of road
users should not be treated as if they were homogeneous. In particular,
different road users may travel at varying speeds in the data sample, which
will influence the final estimation of travel time. For instance, during peak
hours cyclists and pedestrians tend to be much less influenced by congestion
compared to cars or buses, whereas during off-peak hours cars are expected to
travel faster than cyclists. As a result, it would be more reasonable to estimate
travel times separately for various types of road users that utilize the entire
network. To achieve this, different transport modes need to be identified from
the recorded data in the first place. Since the recorded mac addresses do not
provide any information about the corresponding transport mode, the aim
of this paper is to develop an algorithm to model and distinguish multiple
travel patterns in node-to-node travel times, with multiple road user groups
identified [15].

Numerous methods have been proposed for data grouping purposes, which are
categorised into supervised learning (known as classification) and unsupervised
learning (known as clustering). The former is applied when the grouping of
data is known, while the latter is applicable when the grouping is unknown [13,
14]. As mac addresses do not show grouping information of road users, cluster
analysis of the node-to-node travel time data is carried out in this paper.
There are two types of clustering techniques, namely, crisp clustering and
fuzzy clustering. Crisp clustering divides data into crisp clusters, where each
individual belongs to exactly one cluster. In contrast, fuzzy clustering may
determine that an item belongs to more than one cluster, producing degrees
of membership that indicate the extent to which such an item belongs to
those clusters. D’Urso and Maharaj [6] claimed that crisp clustering may not
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be appropriate in practical situations, since in many cases there is no definite
boundary between clusters and hence fuzzy clustering appears to be the better
option. This claim is relevant to our study, as the boundary of travel time
between different types of road users may be vague. For instance, during peak
hours cyclists may travel at a speed very close to, or even higher than, that
of cars, while during off-peak hours the travel time of a bus over a segment of
road might be rather similar to an ordinary motor vehicle. In this study, both
crisp and fuzzy clustering techniques are employed, and a comparison between
them is carried out to indicate which one is more appropriate in studying
bms travel time data. In particular, we consider the k-means algorithm as a
means of crisp clustering and the Gaussian mixture model as a means of fuzzy
clustering. Both methods have been widely applied [11]. Section 2 briefly
describes these two methods.

2 Methods

To estimate and predict travel time for various transport modes accurately,
groups of road users need to be identified in the first place. We propose to
use unsupervised learning techniques to study the grouping of travel times
for the following reasons.

1. mac addresses do not indicate which transport modes are in operation
during a particular period of time, and transport patterns may show
large variability over time. Thus, it is not feasible to pre-determine the
groupings.

2. Supervised learning depends heavily on historical information, which
may not always be representative in transport research since travel
patterns are often influenced by external facts such as weather and
incidents.

We consider both crisp and fuzzy clustering in this study. In the following
subsections, the k-means algorithm and the Gaussian mixture model are briefly
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described, respectively. As both methods are unsupervised non-hierarchical
approaches, one needs to determine the number of clusters beforehand. The
cluster number selection criterion for each of the two methods is also discussed.

2.1 k-means algorithm

The k-means algorithm, proposed by MacQueen [16], is probably the most
widely used non-hierarchical clustering method. Let Xi = (xi,1, xi,2, . . . , xi,m)
be the ith object characterised by m variables, and let X = {X1,X2, . . . ,Xn}
be a set of n objects. Denote U an n × k partition matrix with binary
elements ui,l = 1 indicating that object i belongs to cluster l and 0 otherwise.
Denote Z = (Z1,Z2, . . . ,Zk) a set of k vectors representing the centroids of
the k clusters. Let d(xi,j, zl,j) be a distance measure between object i and the
centroid of cluster l on the jth variable. For numeric variables, d(xi,j, zl,j) is
often the L2-norm; for categorical variables, d(xi,j, zl,j) = 0 if xi,j = zl,j and 1
otherwise. The k-means algorithm searches for a partition of X into k clusters
which minimises the objective function P with unknown variables U and Z as

P(U,Z) =

k∑
l=1

n∑
i=1

m∑
j=1

ui,ld(xi,j, zl,j)

subject to
k∑
l=1

ui,l = 1, 1 6 i 6 n.

To solve the optimisation problem in the k-means algorithm, the following
two steps are taken in each of the repeated loops:

1. Fix Z = Ẑ, and solve the reduced problem P(U, Ẑ) as follows:

ui,l = 1 if
m∑
j=1

d(xi,j, zl,j) 6
m∑
j=1

d(xi,j, zt,j) where 1 6 t 6 k;

ui,t = 0 for t 6= l.
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2. Fix U = Û, and solve the reduced problem P(Û,Z). For numerical
variables, the reduced problem is solved as follows:

zl,j =

∑n
i=1 ui,lxi,j∑n
i=1 ui,l

where 1 6 l 6 k, 1 6 j 6 m.

For categorical variables, the reduced problem is solved as follows:

zl,j = a
r
j ,

where arj is the mode of the variable values in cluster l.

In summary, the k-means algorithm partitions n objects into k clusters. Each
object is allocated to the cluster with which the dissimilarity measure is the
smallest. Each time an object changes clusters, the centroids of both its old
and new clusters are updated. This algorithm stops when the optimisation
problem is solved.

As the k-means algorithm requires a predetermined number of clusters, we
employ the Silhouette coefficient proposed by Rousseeuw [21]. The Silhouette
coefficient is a function of both cohesion and separation of clusters, implying
that both within-cluster variation and inter-cluster distance are taken into
account. For each observation a Silhouette coefficient is computed, and
the average value of the Silhouette coefficients of all individuals is used as
an overall measure of clustering performance. If the number of clusters is
unknown, then the k-means algorithm is subject to a range of possible values,
and the one leading to the highest average Silhouette coefficient is considered
as the optimal number of clusters.

2.2 Gaussian mixture model

The Gaussian mixture model is applied frequently as a means of clustering [5,
7, 8, 20]. Banfield and Raftery [1] defined the term model-based cluster
analysis for clustering based on finite mixtures of Gaussian distributions
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and related methods. We briefly describe the Gaussian mixture model as
follows. Assume that real-valued observations X1, . . . ,Xn are modelled as
independently identically distributed (i.i.d.) with the density

f(X; θ) =

G∑
j=1

πjφ(Xi;µj,σ
2
j),

where G denotes the number of mixture components, φ(·;µj,σ2j) is the density
of the jth Gaussian distribution with mean µj and variance σ2j , and πj is
the proportion of the jth mixture component satisfying

∑G
j=1 πj = 1. If G

is unknown, then the Bayesian information criterion [22] is employed as a
standard estimation method [9]. θ denotes the parameter vector containing
all proportions, means and variances, which are estimated by the maximum
likelihood estimator defined as

θ̂n = argmax
θ∈Θ

n∑
i=1

logf(Xi; θ),

where Θ = (θ | σ2j > s, j = 1, . . . ,G,
∑G
j=1 πj = 1) for some choice of s > 0

that represents the lower bound of variances to avoid degeneracy of the log-
likelihood function. The maximum likelihood estimation is usually carried out
using the expectation-maximisation (em) algorithm [20]. Once θ̂n is obtained,
the posterior probability that the ith observation Xi was generated by the
pth component is computed by

τ̂i,p =
π̂pφ(Xi; µ̂p, σ̂

2
p)

f(Xi; θ̂)
,

and for n observations to be clustered into G groups, an n × G posterior
matrix is

τ̂ =

 τ̂1,1 . . . τ̂1,G
... . . . ...
τ̂n,1 . . . τ̂n,G

 .
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The matrix above is used to determine the degrees of membership, that is,
to what extent an individual is believed to belong to each of the clusters.
This implies that particular observations are allowed to belong to more
than one cluster with different membership degrees, with the associated
fuzziness taken into account. D’Urso and Maharaj [6] recommended such
a fuzzy clustering approach when the boundary of clusters is not clear-
cut, as for those individuals close to the boundary it is more plausible to
consider their groupings in terms of membership degrees rather than in
terms of total membership versus non-membership. Consequently, the fuzzy
clustering exhibits greater adaptivity in defining the prototypes, that is, the
representatives of clusters. Such an advantage becomes substantial when two
or more groups of data show similar patterns.

3 Data and research design

The data used in this study were observed by the tmr on 12 Nov 2013
(Tuesday) from multiple Bluetooth mac address sensors, which were located
at the intersections on Sandgate Road with Pritchard Road, Zillmere Road
and Beams Road, in north Brisbane, Queensland (Figure 1). The link from
the Pritchard Road intersection to the Zillmere Road intersection is labelled
as Link 1260, whereas the link from the Zillmere Road intersection to the
Beams Road intersection is labelled as Link 1262. Both links are outbound
from the cbd of Brisbane tracking north, and each link has two bus stops.
Link 1260 is 1.3 kilometres long with two intersections that have traffic lights
in operation, whereas Link 1262 is 1.1 kilometres long with one intersection
that has traffic lights in operation. The speed limit is 70 km/h for both links.
Two service stations and a fast food outlet are located along Link 1260. The
locations of Bluetooth mac address sensors, the lengths of the two links and
service/food facilities are labelled on the map shown by Figure 1.

For Link 1260, a total of 3303 valid mac address pairs were scanned on
12 Nov 2013, and hence 3303 travel times were obtained. For Link 1262, the
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Figure 1: Sandgate Road and its surroundings (Source: Google Maps)

sample size is 1424. Figure 2 displays the individual travel times recorded
between 8:00 and 20:00 on 12 Nov 2013 for different road users on Link 1260
and 1262. Peak and off-peak hours are displayed by the figure. As both links
are outbound from the Brisbane city, peak hours emerge in the afternoon.
For Link 1260, the plot shows two peaks. The first peak is between hours
from 14:30 to 16:00, where the majority of road users took longer to travel
through Link 1260. This is because of the school zone operating times for
the Geebung Preschool and St Kevin’s Catholic Primary School, which are
located around 500 metres away from Sandgate road. During the afternoon
school zone time period, motor vehicles picking up students from these two
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Figure 2: Individual travel times over Link 1260 and 1262 on 12 Nov 2013
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schools may join Sandgate road from Pritchard Road or Robinson Road East
(State Route 28), causing delay in travel time over Link 1260. The second
peak is mainly because of people getting off work in late afternoon, which
starts with an increase in travel time at around 16:30, reaching the maximum
at around 17:00–17:30 and ending with a rapid drop at around 18:30. For
Link 1262, 16:00–18:00 appeared to be peak hours on that day as the travel
time during this period was noticeably higher than the other hours.

The clustering process using the k-means algorithm and Gaussian mixture
model is carried out based on 15 minute consecutive time intervals from 8:00
to 20:00. That is, travel time data recorded from 8:00 to 8:15 are clustered
first, followed by those recorded from 8:15 to 8:30, and so on. Before fitting
the Gaussian mixture model, the natural log of the recorded travel times
was taken. For each of the 15 minute time intervals, the optimal number
of clusters is determined by the Silhouette coefficient and the Bayesian
Information Criterion, and then clusters of data collected over the 15 minute
period are determined in an unsupervised manner. The determined clusters
are used to estimate the travel time for various transport modes. In particular,
we concentrate on the average travel time estimation for cars. During off-peak
hours, cars are generally believed to be the quickest group of road users on
average, but this is not always the case during peak hours. For instance, in
congestion it is not rare to observe cyclists travelling at a faster speed than
cars. As a consequence, while cars are identified as the group that has the
shortest travel time during off-peak hours, we assume the largest cluster is
representative of traffic conditions during peak hours and hence the average
travel time of cars is estimated based on this cluster.

To justify the clustering results, two evaluations were conducted. The first
evaluation aims at comparing the estimated travel time produced by the
clustering methods to some counterpart. To approximate real travel time of
vehicles, the tmr also collected spot speed data of Link 1260, namely, data
of vehicle speed collected at a single node on the link. Given the length of
the link, the spot speed data are converted to travel time in seconds, and
then averages are taken over consecutive 5 minute time intervals from 8:00
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to 20:00 as approximations of real travel time over the day. The comparison
between the results from clustering and the spot speed data helps determine
if the two clustering approaches achieve reliable performance.

The second evaluation aims at examining to what extent the produced clusters
of road users are consistent over different road segments. If the travel time of
a road user is repeatedly observed over two segments of a road, then we expect
that data from both segments will imply the same grouping of such a road
user. Consequently, a clustering method is said to be relatively consistent if
a relatively high proportion of repeatedly observed road users are clustered
into the same group over different segments. To carry out this evaluation,
repeatedly observed road users on Link 1260 and Link 1262 are identified
using the mac addresses. The groupings of these road users on both links are
recorded, and the proportion of consistent groupings is calculated.

4 Empirical results

Figure 3 and Figure 4 display the clusters determined by the two clustering
methods for Link 1260 and 1262, respectively. The colour of each scatter
point indicates which cluster it should belong to. For the k-means algorithm,
a single colour is assigned to the entire cluster as per the crisp clustering
principle. For the Gaussian mixture model, the colour is assigned to each
individual by its posterior probabilities values, which coincide with the rgb
colouring function in matlab ([1, 0, 0], [0, 1, 0] and [0, 0, 1] correspond
respectively to red, green and blue). For instance, if the Gaussian mixture
model determines posterior probabilities [0, 0.01, 0.99], then the colour of the
corresponding scatter point is close to pure blue if [0.5, 0.5, 0] are computed,
then the colour of that individual is somewhere between red and green. For
both clustering methods, the order of the groups is rearranged so that the
colouring is consistent with the speed, that is, the red colour always represents
the quickest group, with green and blue groups being slower.
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Figure 3: Individual travel times over Link 1260 on 12 Nov 2013
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Figure 4: Individual travel times over Link 1262 on 12 Nov 2013
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Figure 5: Comparison of the estimated travel time with spot speed, Link 1260
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In terms of the number of clusters detected, the Gaussian mixture model
consistently prefers two clusters of road users for Link 1260, and for Link 1262
one exception emerged at the last time interval (19:45–20:00) where three
clusters were determined based on only a few observations. On the other hand,
the k-means algorithm vacillates between two and three cluster solutions.
During off-peak hours over Link 1260, the k-means algorithm tends to produce
a larger cluster for cars compared to that from the Gaussian mixture model,
resulting in slightly higher estimates of the average travel time. During peak
hours, while the k-means algorithm produces distinct clusters, the fuzziness
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Table 1: Proportions of road users that have the same grouping over the two
links.

Off-peak hours Peak hours
k-means algorithm 57.96% 51.74%
Gaussian mixture model 75.12% 55.56%
Difference 17.16%*** 3.82%

on cluster boundaries is noticeable as indicated by the Gaussian mixture
model. Overall, both methods appear to track change points in traffic patterns
quite well.

Figure 5 compares the spot speed data to the average travel time estimates
obtained by the two clustering methods. The figure indicates that both
methods were able to produce travel time estimates that follow the real traffic
trend quite well over time. To examine whether the clustering methods are
able to group an individual into the same cluster on different road segments,
clusters of repeatedly observed road users on Link 1260 and 1262 are recorded
and compared. In total, travel times of 647 and 288 road users were repeatedly
recorded during off-peak and peak hours, respectively. Table 1 reports the
proportions of road users that have the same grouping over the two links. The
Gaussian mixture model has higher proportions than the k-means algorithm
with the difference over off-peak period being statistically significant at 1%
level of significance, as indicated by ***. This implies that the Gaussian
mixture model tends to be more consistent in grouping road users, especially
during off-peak hours.

5 Discussion

Data collected from the bms provide information about travel patterns of
individual road users, and travel time estimation is carried out using the bms
data. To do so, many past studies take the average or the median of collected
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data after removing outliers, overlooking the existence of multiple transport
modes which have distinct travel patterns. Insufficient research has been
undertaken in relation to identify multiple transport modes from recorded
travel times, and we filled this gap by carrying out cluster analysis of the bms
data. The Gaussian mixture model and the k-means algorithm were employed
for clustering purposes, and we carried out an empirical study on the bms
travel time data collected from segments of Sandgate Road. Both clustering
methods were demonstrated to be competent in discriminating between groups
of travellers, producing travel time estimates that are fairly close to the real
time data. In addition, the Gaussian mixture model was believed to be
more consistent in terms of determining the grouping of repeatedly observed
travellers over different road segments.

While the research presented in this paper provides a guideline to categorise
transport modes, subsequent studies are worth carrying out to further address
the issue of transport monitoring. As the tmr aims at high-quality estimation
and prediction of travel time for various transport modes, methods that are
capable of modelling travel time data after grouping should be explored. For
instance, nonparametric smoothing techniques might be suitable to gather
information about distributional properties of travel times at a specific time,
whereas functional time series models may contribute to predicting traffic con-
ditions. Furthermore, integrating temporal information with spatial statistics
has the potential to improve the efficiency of monitoring road networks [12].
Research related to these methods is planned for the future.

Acknowledgements The authors thank the Queensland Department of
Transport and Main Roads for providing the bms travel time data.
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