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A compact fourth-order spatial discretisation
applied to the Navier–Stokes equations
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Abstract

Modern direct and large eddy simulation of turbulent and transition
flows requires accurate solution of the Navier–Stokes equations. High
accuracy is achieved using a high order discretisation. The standard
high order approach for local methods, such as finite-difference or finite-
volume, produces large computational molecules and thus introduces
complexity in the boundary treatment and parallelisation. Existing
compact schemes need to invert a matrix system, which increases the
computational cost, and are restricted to application on non-uniform
grids. The fourth-order compact scheme proposed here iteratively
applies a low order compact method to achieve higher accuracy. The
scheme allows for a simple application of boundary conditions, can be
applied on a non-uniform grid and allows a standard parallelisation
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approach to be used. The scheme is implemented and tested in an
unsteady finite-difference heat equation solver and benchmarked against
the analytical solution to validate the order of accuracy. It is also
included in a full fractional-step Navier–Stokes solver and validated for
the lid-driven cavity problem.
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1 Introduction

The governing equations for almost all computational fluid dynamics problems
are the Navier–Stokes equations shown in equation (12) to (14). Starting
from the Chorin scheme [1], a variety of numerical approaches have been
developed to solve these equations. With the increasing demand for accurate
solutions of the Navier–Stokes equations required in modern direct or large-
eddy simulations for turbulent and transition flow, the development of high
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order spatial schemes is of great significance, improving solution accuracy,
and requiring less computational power.

The simplest form of a high order scheme, the standard central difference
scheme (cds) requires large computational molecules [2], making it difficult
to properly evaluate the derivatives at nodes near boundaries. Gibou and
Fedkiw [3] used a fourth-order central difference scheme (cds-4) and suggested
a boundary treatment using ghost cells. By adding extra nodes external to the
computational domain, derivatives at all interior nodes can be evaluated once
nodal values are known. Unfortunately, the values at the external nodes are
undefined and must be obtained by extrapolation. Maintaining fully fourth-
order behaviour with the cds-4 scheme requires sixth-order extrapolation for
the external nodes, further affecting the complexity and efficiency of the code.
The large computational molecules also reduce the efficiency of parallelisation,
requiring a greater exchange of data on the subdomain boundaries.

Compact schemes reduce the size of the computational molecule so that the
solution at any node depends directly only on the solution at neighbour nodes.
Lele [4] proposed such a scheme where higher order approximations to the
spatial derivatives were obtained by solving an additional matrix system for
those derivatives at each node. This increased the computational cost while
the solution accuracy was severely degraded for non-uniform grids [2]. Despite
these disadvantages this approach was used by a number of researches [5, 6, 7].

The scheme proposed in this article provides fourth-order spatial accuracy
in a compact finite difference form. The high order accuracy is achieved by
iteratively applying low order discretisations. The lower order discretisation
is chosen to be the second-order central difference scheme (cds-2) which
does not require the solution of an additional linear system. The new spatial
scheme was coded and validated in a typical two-dimensional steady-state heat
conduction problem. It was also applied in a full unsteady two-dimensional
incompressible Navier–Stokes solver for the lid-driven cavity problem.
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2 Numerical methods

2.1 Spatial scheme

Approximation of first derivative Consider the case of a one-dimensional
function φ(x) defined on a uniformly-discretised domain with grid size h,
with xi the nodal locations. Using Taylor series, the first derivative φx is
approximated in a second central difference form for the whole computational
domain by

φ ′i =
1

h

(
−
1

2
φi−1 +

1

2
φi+1

)
= φx +

h2

6
φ(3) +

h4

120
φ(5) + O(h6) , (1)

where φ ′i is a second-order central difference approximation to the first
derivative of φ, at the xi location, and φx is the exact first derivative of φ
at xi. The second-order central derivative approximation at xi is φ ′′i and
the exact second derivative is φxx. Higher derivatives are denoted as φ(n),
representing the nth derivatives of φ at xi.

A linear combination of the φ ′ terms at i−1, i and i+1 provides a fourth-order
accurate approximation for the first derivative of φ at xi as

φ̂ ′i = αφ
′
i−1 + βφ

′
i + γφ

′
i+1 = φx + O(h4) , (2)

where the coefficients α, β and γ are obtained by expanding the second-order
finite difference form at i − 1, i and i + 1, and setting the h, h2 and h3
coefficients to zero. Solving for α, β and γ gives

φ̂ ′i = −
1

6
φ ′i−1 +

4

3
φ ′i −

1

6
φ ′i+1 . (3)

In this process of obtaining a fourth-order discretisation, instead of a five-
point stencil [8] performed once over the entire domain, a three-point stencil
is applied twice. As a result, the computational cost for the fourth-order
compact scheme (Compact-4) is expected to be twice that of cds-2.
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Approximation of second derivative The second derivative is approx-
imated similarly to the first derivative. The central difference form for the
second derivative at location i is

φ ′′i =
1

h2
(φi−1 − 2φi + φi+1) = φxx +

h2

12
φ(4) +

h4

360
φ(6) + O(h8) . (4)

Assuming that the fourth-order discretisation is a linear combination of the
above discretisation gives

φ̂ ′′i = αφ ′′i−1 + βφ
′′
i + γφ ′′i+1 = φxx + O(h4) . (5)

Requiring all terms with order lower than h4 to be zero gives

φ̂ ′′i = −
1

12
φ ′′i−1 +

7

6
φ ′′i −

1

12
φ ′′i+1 . (6)

Boundary treatment and truncation error To obtain the fourth-order
approximations to the derivatives at all interior nodes, boundary derivatives
are used rather than boundary values. Boundary derivatives require a fourth-
order extrapolation for the derivatives at the boundary nodes. The standard
Lagrange interpolating polynomial approach given in by Kudryavtsev and
Hazewinkel [9] is used here. The higher the order of extrapolation, the more
nodes required. The extrapolation is applied after obtaining φ ′ and φ ′′ at the
interior nodes to provide those quantities on the boundaries. Provided at least
fourth-order extrapolation is used, φ̂ ′ and φ̂ ′′ will retain their fourth-order
accuracy. Using higher order extrapolations will alter the magnitude of the
coefficients of the truncation terms, but does not change the overall order of
accuracy, as shown in Table 1.

Table 1 compares the truncation error of the compact fourth-order scheme,
described above and denoted Compact-4, to that of the standard second and
fourth-order central schemes, cds-2 and cds-4, and to the compact Padé
approximation scheme of Lele [4], Padé-4. Peter and Chenwu [7] provided
the truncation error terms for Padé-4.
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Table 1: Truncation terms for approximations at boundary nodes using
Compact-4.

Extrapolations First Derivative Second Derivative
4th order −φ(5)

30
h4 − φ(6)

6
h5 + O(h6) −φ(6)

90
h4 − φ(7)

12
h5 + O(h6)

5th order −φ(5)

30
h4 + O(h6) −φ(6)

90
h4 + O(h6)

6th order −φ(5)

30
h4 + O(h6) −φ(6)

90
h4 + O(h6)

Table 2: Truncation error for φx and φxx.
First Derivative Second Derivative

Scheme Interior Boundary Interior Boundary
cds-2 φ(3)

6
h2 – φ(4)

12
h2 –

cds-4 −φ(5)

30
h4 −φ(5)

30
h4 − φ(6)

12
h5 −φ(6)

90
h4 −φ(6)

90
h4 − φ(7)

12
h5

Padé-4 −φ(5)

120
h4 – φ(6)

200
h4 –

Compact-4 −φ(5)

30
h4 −φ(5)

30
h4 − φ(6)

6
h5 −φ(6)

90
h4 −φ(6)

90
h4 − φ(7)

12
h5

The Compact-4 scheme provides the same order of accuracy as cds-4 but
is more compact in form since it uses a three-node molecule. Compact-4
requires only fourth-order extrapolation for the derivatives at the boundary
but provides similar accuracy to cds-4 at the boundaries. In contrast, the
cds-4 scheme requires fifth-order extrapolation for the first derivative and
sixth-order for the second derivative. Both the high order of the polynomial
and the varied implementation complicate the application and parallelisation
of cds-4. Additionally, the Compact-4 scheme does not require the inversion
of a matrix system required in Padé-4.
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2.2 Time scheme

To obtain the fully developed steady state solution, an explicit Euler time
advancing method is applied as

φn+1 − φn

∆t
= rhsn , (7)

where superscript n denotes the time step and rhs is the right hand side of
either the heat equation (8) or the momentum equations (12) and (13). The
solution is then advanced in time and is fully developed in Section 3.

2.3 Grids

Both uniform and non-uniform grids are considered. In some problems where
the solution varies significantly near boundaries, for example boundary layer
flows, non-uniform grids are more effective. Since the grid size is not a flow
constant, schemes on non-uniform grids have lower order accuracy than on
uniform grids. The formal orders of accuracy of the schemes described here
are reduced on non-uniform grids [10, 11, 12], as are the convergence rates.
Also, the solution accuracy and convergence is dependent on the aspect ratio
of the grid [13].

The non-uniform grids chosen here are symmetrically expanded with a constant
expansion ratio, as shown in Figure 1. Such grids can be refined by inserting
extra nodes between any two nodes at a place where the refined grid also
has a constant ratio of spacings. As a result, the expansion factor of the fine
grid is the square root of that of the coarse grid, and the order of accuracy is
expected to be, asymptotically, the same as that of the uniform grid [2]. The
initial grid has 20 nodes in both directions with an expansion ratio of 1.1,
which is the case shown in the Figure 1.
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Figure 1: Non-uniform grid example (N = 20 , r = 1.1).

3 Applications

The schemes were applied to the two-dimensional heat conduction problem
and the lid-driven cavity problem with Reynolds number of 100, where the
order of accuracy was validated on both uniform and non-uniform grids.

3.1 Solutions of the heat equation

The heat equation is a linear parabolic partial differential equation. The
specific heat equation that is tested here was chosen due to the availability of
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the exact solution that is used to validate the accuracy of the schemes,

Tt = κ(Txx + Tyy) + sin(πy) sin(3πx) on Ω = [0, 1]× [0, 1] , (8)

where the diffusivity κ = 0.01 , T is the temperature field, and all angles are
in radians. Zero Dirichlet boundary conditions are specified on all sides of the
domain, and the initial condition is zero. The fully developed exact solution
is

T =
10

π2
sin(πy) sin(3πx) . (9)

To ensure the time advancing scheme is stable, the time step is constrained
using the von Neumann stability condition [14, 15]

∆t 6
h2

4κ
, (10)

for cds-2, and

∆t 6
h2

8κ
, (11)

for cds-4 and Compact-4. The solution is considered to have reached its steady
state when the residual, obtained by averaging the unsteady term |(Tn+1 −
Tn)/∆t| over the domain, reduces to 1× 10−8.

Grid tests were carried out by examining the error, shown in Table 3 at
a specific node when the grid was refined. The node chosen here is the
centre of the domain with coordinates (0.5, 0.5). The analytical solution is
T(0.5, 0.5) = −10/π2 . The cds-4 results are not listed here because they
are identical to the Compact-4 results as the two schemes have identical
truncation error for second derivatives.

Table 3 shows that Compact-4 is capable of providing an accurate solution
on a much coarser grid compared to the second order scheme. The solu-
tion T(0.5, 0.5) on a 40 × 40 grid using Compact-4 is even more accurate
than that on a 320× 320 grid using cds-2. The order of accuracy calculation
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Table 3: Error tests for steady-state T(0.5, 0.5).
uniform grids non-uniform grids

N cds-2 Compact-4 cds-2 Compact-4
20 −1.7× 10−2 −8.7× 10−4 −9.2× 10−3 3.1× 10−3
40 −4.3× 10−3 −3.4× 10−5 −1.9× 10−3 2.3× 10−4
80 −1.1× 10−3 −2.0× 10−6 −4.6× 10−4 1.5× 10−5
160 −2.6× 10−4 −9.8× 10−8 −1.1× 10−4 9.3× 10−7
320 −6.4× 10−5 −1.7× 10−8 −2.9× 10−5 8.6× 10−8

O(hn) 2.0005 4.0206 2.0158 4.0587

confirms that the Compact-4 scheme is fourth-order accurate in space. Fig-
ure 2 shows the error relative to the exact solution at different grid numbers.
Errors of solutions using Compact-4 decrease much faster as the grid number
increases than those obtained with cds-2. The decrease of error follows
the fourth-order fitting line, also demonstrating the Compact-4 scheme is
fourth-order accurate in space.

In terms of cpu time performance, comparison was made between two cases:
Compact-4 on the 80 × 80 non-uniform grid and cds-2 on the 160 × 160
non-uniform grid. Figure 2 shows that these two cases have similar accuracy,
but the cpu time for the former is around 210 seconds and for the latter is
1100 seconds, which is about four times longer. cpu time tests were run in
Matlab R2014b on a single core of an i7 960 3.2GHz machine.
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Figure 2: Heat equation solution convergence.

3.2 Solutions of the Navier–Stokes equations

The governing equations for the lid-driven cavity flow are the two-dimensional
incompressible unsteady Navier–Stokes equations,

Ut +UUx + VUy = −Px +
1

Re
(Uxx +Uyy) , (12)

Vt +UVx + VVy = −Py +
1

Re
(Vxx + Vyy) , (13)

Ux + Vy = 0 , (14)
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where U and V are velocities in the x and y directions, respectively, P is
the pressure, Re = V̄L/ν is the Reynolds number, where V̄ is the mean
driving velocity, L is the cavity width, and ν is the kinematic viscosity of
the fluid. The lid-driven cavity problem is a common benchmark flow for
scheme development due to its simple geometry and boundary conditions.
The equations are solved in domain Ω = [0, 1] × [0, 1] . The side y = 1 for
all x has a shearing velocity that drives the cavity flow, with the velocity on all
other boundaries set to zero. The Reynolds number is set to 100. Benchmark
results are widely available for low Reynolds number flow [16, 17, 18, 19]. To
avoid velocity singularities at the two corners (x,y)=(0, 1) and (1, 1), the
regularised driven cavity is applied when the driving velocity is smoothed by
applying a continuous distribution [20]. The shearing velocity in this case
takes the distribution of a parabola, with an average magnitude of 1.0,

Uy=1 = −6x2 + 6x , (15)

where x = 0 at the left hand side of the domain.

The fractional step method has been widely used and examined for the solution
of the unsteady incompressible Navier–Stokes equations on both staggered
and non-staggered grids [21, 22, 23]. The fractional step method used here is
explicit and is applied on a non-staggered grid. It is briefly written as

U∗ −Un

∆t
+ (UUx + VUy)

n = −Pnx +
1

Re
(Uxx +Uyy)

n , (16)

V∗ − Vn

∆t
+ (UVx + VVy)

n = −Pny +
1

Re
(Vxx + Vyy)

n , (17)

Πxx + Πyy =
1

∆t
(U∗x + V

∗
y ) , (18)

Pn+1 = Pn + Π , (19)
Un+1 = U∗ − ∆tΠx , (20)
Vn+1 = V∗ − ∆tΠy , (21)

where U∗ and V∗ are explicit solutions of the momentum equations (12)
and (13), and Π is the pressure correction term.
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The application of Compact-4 to all spatial derivatives in the fractional-step
scheme is straight forward, with the exception of the Πxx + Πyy terms in
the pressure correction equation (18). As this is an implicit equation which
is solved for Π, the discretisation must be in terms of Π, and therefore we
can use either cds-2 or cds-4. To maintain the overall compact structure
of the algorithm, it is better to use the cds-2 scheme. The effect of the
cds-2 scheme on the overall accuracy of the scheme is examined below. In
a one-dimensional analogue of (18), applying the Compact-4 scheme to the
divergence terms and a second-order central difference scheme to the pressure
correction term, we obtain

Π ′′i =
Πi−1 − 2Πi + Πi+1

h2
=
1

∆t
Û ′i
∗
=
1

∆t

(
−
1

6
U ′
∗
i−1 +

4

3
U ′i
∗
−
1

6
U ′
∗
i+1

)
,

(22)
and the correction to the velocities is discretised as

Un+1i = U∗i − ∆t

(
−
1

6
Π ′i−1 +

4

3
Π ′i −

1

6
Π ′i+1

)
. (23)

Taking the first derivative of equation (23), applying the Compact-4 scheme
to the Π̂ ′ terms, and multiplying equation (22) by ∆t to remove the Û ′i

∗
from

equation (23), gives

Un+1i = ∆tΠ ′′i − ∆t

[
−
1

6

(
−
1

6
Π ′′i−2 +

4

3
Π ′′i−1 −

1

6
Π ′′i

)
+
4

3

(
−
1

6
Π ′′i−1 +

4

3
Π ′′i −

1

6
Π ′′i+1

)
−
1

6

(
−
1

6
Π ′′i +

4

3
Π ′′i+1 −

1

6
Π ′′i+2

)]
= ∆t Π ′′i − ∆t

(
1

36
Π ′′i−2 −

4

9
Π ′′i−1 +

11

6
Π ′′i −

4

9
Π ′′i+1 −

1

36
Π ′′i+2

)
= ∆t

(
−
1

36
Π ′′i−2 +

4

9
Π ′′i−1 −

5

6
Π ′′i +

4

9
Π ′′i+1 −

1

36
Π ′′i+2

)
. (24)
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All Π ′′ terms are then expanded using cds-2,

Un+1i =
∆t

h2

(
−
1

36
Πi−3 +

1

2
Πi−2 −

7

4
Πi−1 +

23

9
Πi −

7

4
Πi+1 +

1

2
Πi+2 −

1

36
Πi+3

)
=
∆t

h2

(
h4

3
Π(4) +

h6

36
Π(6) + O(h8)

)
=
∆t

3
h2

[
Π(4) + O(h2)

]
. (25)

Applying the same method to (23), but using a fourth-order central difference
scheme for the pressure correction term, gives

Un+1i =
∆t

h2

(
−
1

36
Πi−3 +

5

12
Πi−2 −

17

12
Πi−1 +

37

18
Πi −

17

12
Πi+1

+
5

12
Πi+2 −

1

36
Πi+3

)
=
∆t

h2

(
h4

4
Π(4) +

h6

72
Π(6) + O(h8)

)
=
∆t

4
h2

[
Π(4) + O(h2)

]
. (26)

In equation (25) the velocity U, after correction using cds-2 for the pressure
correction term, is fourth-order in space and second-order in time. Instead
applying cds-4 to the pressure correction term produces the same order but a
smaller coefficient of Π(4), which implies that the discretisation of the pressure
correction term Π does not affect the order of accuracy of the corrected
velocity term. Spatial accuracy tests were conducted on both uniform and
non-uniform grids with pressure correction terms expanded by cds-2 and
cds-4. Table 4 shows U(0.5, 0.5) at different grid numbers. The residuals for
the steady-state solutions, obtained by averaging the absolute unsteady terms
in both the momentum equations (12) and (13), are both less than 1× 10−8.
In all cases, zero normal derivative boundary conditions on all boundaries are
applied for Π.

From Table 4, cds-2 for the pressure correction terms gives steady-state
solutions very close to cds-4, confirming that the discretisation for pressure
correction does not affect the solution accuracy when the steady-state solution
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Table 4: Steady-state U(0.5, 0.5) pressure correction discretisation.
uniform grids non-uniform grids

N cds-2 cds-4 cds-2 cds-4
20 −0.2561 −0.2561 −0.2633 −0.2633
40 −0.2670 −0.2670 −0.2671 −0.2671
80 −0.2674 −0.2674 −0.2674 −0.2674
160 −0.2675 −0.2675 −0.2675 −0.2675

O(hn) 3.6247 3.6247 3.0448 3.0448

Figure 3: Quadratically distributed velocity driven cavity streamlines (Re =
100,N = 160, r = 1.012).
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Table 5: Steady-state U(0.5, 0.5) spatial accuracy.
uniform grids non-uniform grids

N cds-2 Compact-4 cds-2 Compact-4
20 −0.2309 −0.2561 −0.2524 −0.2633
40 −0.2587 −0.2670 −0.2640 −0.2671
80 −0.2653 −0.2674 −0.2666 −0.2674
160 −0.2669 −0.2675 −0.2673 −0.2675

O(hn) 2.0310 3.6247 2.0294 3.0448

is achieved. This means that the cds-2 method can be used for the Πxx+Πyy
terms.

Figure 3 shows the lid-driven cavity streamlines obtained using the Compact-4
scheme. This result is slightly different to that found by Brunei and Jouron [18]
as we used the quadratically distributed driving velocity, equation (15).
Table 5 shows grid tests results conducted using cds-2 and the Compact-4
scheme with maximum residual of 1×10−8 and both uniform and non-uniform
grids, all obtained with cds-2 for Πxx + Πyy. Results on the uniform grid
show the cds-2 scheme has very close to second-order accuracy, while the
Compact-4 scheme has slightly less than fourth-order accuracy. The Compact-
4 scheme provides a significantly more accurate solution, with the result
obtained on the 40×40 grid approximately equal to that of the cds-2 scheme
on the 160× 160 grid. On the non-uniform grid the cds-2 scheme is again
very close to second-order, while Compact-4 is approximately third-order.
Compact-4 is apparently more affected by the non-uniform error discussed in
Section 2.3. Again the Compact-4 scheme achieves approximately the same
accuracy on the 40× 40 grid as the cds-2 scheme achieves on the 160× 160
grid.

Figure 4 shows the convergence of the Navier–Stokes equation solutions with
the error being the difference between the test solution and the 160 × 160
solution. This figure again shows the considerably improved accuracy and
higher rates of convergence of the Compact-4 scheme compared to the cds-2
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Figure 4: Navier–Stokes equations solution convergence.

scheme, for both uniform and non-uniform grids. Examining all solution
values we see that cds-2 is the least accurate scheme in all cases. cds-4 usually
generates a slightly more accurate solution than the Compact-4 scheme (except
on the 20× 20 grid). The better accuracy of cds-4 is because this scheme
has a smaller coefficient for the sixth-order derivatives in the truncation series
for first derivatives at boundary nodes (Table 1) compared to the Compact-4
scheme. However, this difference is only observed in the sixth decimal place
on the 160×160 grid. Also, solutions on non-uniform grids are more accurate
than their corresponding values on uniform grids, confirming that the use of
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refined grids in the boundary layer regions considerably improves solution
accuracy.

4 Summary

Accurate solutions of the Navier–Stokes equations are required for direct or
large-eddy simulation of turbulent or transition flows. Current high order
schemes require large computational molecules or require the inversion of an
additional matrix system, reducing the ease of coding and solution efficiency.
The fourth-order spatial compact scheme proposed here uses fewer nodes
without requiring an additional matrix system. The basic idea is to achieve
high order by iteratively applying a low order scheme. It also allows a less
complicated boundary treatment as well as an easier application on non-
uniform grids. The new scheme was tested on the heat equation where the
order of accuracy is validated, and was subsequently included in a full Navier–
Stokes solver for the lid-driven cavity problem. The scheme was shown to be
applicable and accurate for these two problems.
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