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Finite element algorithm with adaptive
quadtree-octree mesh refinement
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Abstract

Certain difficulties with the use of quadrilateral or hexahedral fi-
nite elements are related to mesh refinement and to element compat-
ibility and quality after refinement. In this paper, special refinement
elements are presented that make possible connecting two special ele-
ments to one edge of an 8 node quadrilateral element (2D). The main
idea in refinement elements is to place some midside nodes outside
the element area and to modify element shape functions in order to
maintain continuity at a refinement edge. Special refinement elements
allow to adaptively refine mesh in such a way that it fits the quadtree
data structure. In the three-dimensional case, hexahedral elements
with 20 nodes are employed. Placement of some nodes outside the
element volume allows us to create a compatible octree refinement
scheme.
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1 Introduction

Quadrilateral and hexahedral finite elements are widely used for problem
solutions. However, it is difficult to perform mesh refinement preserving
compatibility and element quality after refinement [1].

Methods of quadrilateral mesh refinement in the case of connecting ge-
ometrically incompatible elements are presented in [3, 4]. Forting and Tan-
guy [3] consider connection of two Lagrangian 9-node 2D elements to one
edge of a bigger element of the same type. The displacement compatibil-
ity is enforced by introduction of additional constraints in the global finite
element equation system. This provides convergence of the finite element
solution but the finite element mesh remains geometrically incompatible at
a refinement edge. Kagan et al. [4] focus on the so-called p-refinement of
the mesh, during which additional nodes are added to the element without
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changing its shape. The proposed technique to enforce compatibility is a
coordinate transformation introduced into the refined element.

Our approach to mesh refinement is to replace one 2D quadratic quadri-
lateral element by four elements of the same type. In order to perform 1:2
mesh refinement while maintaining element quality and solution compatibil-
ity, we use special refinement elements, with some nodes outside the element
area. An analogous approach in the three-dimensional case allows us to cre-
ate special elements, four of which can be connected to one face of an ordinary
element.

The following algorithm is used here for adaptive mesh refinement with
control of local errors. Starting with a coarse mesh, element refinement itera-
tions are carried out. At each iteration, the finite element equation system is
solved that provides field nodal values for a current mesh configuration. Local
element errors are estimated and compared to the specified error tolerance.
Elements with excessive errors are divided into four special elements (2D) or
eight special elements (3D). The mesh refinement iteration terminates when
no element splits occur during an iteration.

2 Special quadratic quadrilaterals

The isoparametric quadratic quadrilateral element shown Figure 1,a has eight
nodes, which are used both for element shape definition and for field interpo-
lation [2, e.g.]. Any function specified at element nodes is interpolated inside
the element with the use of shape functions Ni, which are defined in local
coordinates ξ, η (−1 ≤ ξ, η ≤ 1):

u(ξ, η) =
∑

Ni(ξ, η)ui ;

Ni =
1

2
(1− ξ2)(1 + ηηi) , i = 2, 6 ;
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Figure 1: a) Quadratic isoparametric quadrilateral element; b) Mesh re-
finement 1:2; c) The special elements s1 and s2 have been vertically shifted
in order to illustrate the node positions of each element.

Ni =
1

2
(1 + ξξi)(1− η2) , i = 4, 8 ;

Ni =
1

4
(1 + ξξi)(1 + ηηi)−

1

2
(Ni−1 + Ni+1) , i = 1, 3, 5, 7 . (1)

Here u is a function value at some point inside the element; ui are function
values at element nodes; ξi and ηi are values of the local coordinates ξ and η
at the node i. In the formula for N1 we interpret N0 as N8.

With the use of ordinary quadrilateral elements it is difficult to refine
the mesh. Mesh refinement with quadrilaterals can lead to severe element
distortions since, for compatibility reasons, the edges of adjacent elements
must coincide exactly.

We propose here special quadratic quadrilateral elements, which allow to
connect two elements to one edge of the bigger element. Special refinement
elements are characterized by placement of some midside nodes outside the
element area and by modification of the shape functions. An idea of special
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Figure 2: Typical configurations of special refinement elements.

elements for mesh refinement is illustrated in Figure 1,b-c. Mesh refinement
1:2 is performed with two special elements s1 and s2, which have nodes
located outside of the element area.

Modification of the shape functions in the special element is done in the
following way. In order to have field continuity along the element edge 1-3-2
the function value at point ξ = 0 in the special element s1 should be equal
to the function value at point ρ = −0.5 in the conventional neighboring
element c: u(ξ = 0) = u(ρ = −0.5) . Then the compatibility equation is

u(ξ = 0) = u(ρ = −0.5) =
3

8
u1 +

3

4
u3 −

1

8
u2 . (2)

The modified shape functions are combinations of the ordinary shape func-
tions:

N ′
1 = N1 +

3

8
N2 , N ′

2 = −1

8
N2 , N ′

3 = N3 +
3

4
N2 . (3)

Figure 2 shows typical configurations of special refinement elements. If a
special element contains two outside nodes, as shown in Figure 2 on the
right, then modification (3) is applied twice using nodes m1 and m2.
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3 Finite element quadtree mesh refinement

3.1 Finite element solution

I demonstrate the finite element algorithm with quadtree mesh refinement
on a problem of surface approximation with minimization of a global error
and with limitation of a local error. Assume that an approximated surface is
defined at each point. A simple example of such definition is a height function
defined on a two-dimensional domain. Another possibility is definition of a
surface by a point cloud. In the latter case assume that the surface height is
obtained at each point by interpolation of values using neighboring points.

An element approximation error Ee for a surface segment covered by the
element e is

Ee =

∫
Ae

(f − u)2 dA , (4)

where f is the exact surface height, u is the height approximation for the
eth element, and Ae is the element area. The element error serves as a natural
local error indicator for quadtree mesh refinement.

Determine values of the height u for the current element mesh by min-
imization of a global approximation error, which is the sum of element ap-
proximation errors

E =

∫
A

(f − u)2 dA =
∑

e

Ee =
∑

e

∫
Ae

(f −Niui)
2 dA . (5)

Minimization of the global error functional leads to a global finite element
equation system:

KU = R , ke
ij =

∫
Ae

NiNjdA , re
i =

∫
Ae

Nif dA , (6)

where K is a global ”stiffness” matrix; U is a vector of nodal height values
and R is a right-hand side vector. The global matrix K and the right-hand
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Figure 3: Four special refinement elements replace one quadrilateral ele-
ment.

side vector R are respectively composed of element “stiffness” matrices ke

and element vectors re using standard finite element assembly procedures.

For the solution of the finite element equation system (6) it is reasonable
to use iterative methods such as preconditioned conjugate gradient method
since good initial approximation for the solution vector U can be provided
in the beginning and after each refinement step.

3.2 Mesh Refinement

Surface approximation starts with some minimal mesh consisting of ordinary
quadrilaterals. When the approximation domain is a square then it is possible
to use just one quadratic quadrilateral element as a starting mesh. According
to the adaptive refinement procedure, carry out mesh subdivision for elements
where an error indicator of the type (4) is greater than the specified error
tolerance.

A quadrilateral element to be subdivided is replaced by four quadrilateral
elements. See Figure 3 for examples of the element subdivision for the case
of regular surrounding elements and for the case of a partially refined mesh.

Mesh data after any number of refinements (one element is replaced by
four elements) can be conveniently kept in a quadtree data structure. Every
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Figure 4: Split of one element into four (a). Quadtree balancing: split
of neighbors, then split of the next neighbor (b). Initial element split and
element splits for quadtree balancing are shown by dashed lines.

node in the quadtree topologically corresponds to a square. Internal nodes
have exactly four children. Leafs (nodes without children) represent actual
elements, which are ordinary elements or special refinement elements with
outside nodes.

After splitting elements with excessive errors, the refined mesh may have
such configuration in which it is impossible to provide continuity across some
element boundaries. Figure 4,a presents an example of a quadtree with dis-
continuity element splits.

A quadtree is said to be unbalanced if there exists a square that is adjacent
to more than two squares at one of its edges [5]. In a balanced quadtree, ad-
jacent quadtree blocks differ by at most one level, that is, not more then two
elements can share one edge of the neighboring element. Balance a quadtree
by additional subdivisions of some elements as shown in Figure 4,b. This
example demonstrates that adaptive refinement may necessitate secondary
subdivision of adjacent elements. For any balanced quadtree, ensure continu-
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Error = 0.0005, 6 iterations Error = 0.0001, 7 iterations

Figure 5: Quadtrees of quadratic quadrilaterals characterized by different
height approximation errors.

ity using special refinement elements with outside nodes and modified shape
functions.

During quadtree balancing, a given leaf should be split if its level is higher
than any level of its neighboring leaves by 2. Newly created leaves should be
put into list of candidates for splitting since they may necessitate secondary
subdivisions as shown in Figure 4,b.

The process of surface modeling by a mesh of quadratic quadrilateral
elements begins with some initial mesh. During mesh refinement step, first,
the finite element equation system (6) is assembled and solved. The height
values are obtained for all mesh nodes. Then for each element estimate
the local element error Ee (4) and compare to the specified error tolerance.
Splitting of elements with excessive errors is performed. Balance the element
quadtree at the end of each refinement iteration. Terminate mesh refinement
when no splits occur during an iteration.
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3.3 Results

The proposed finite element algorithm with quadtree adaptive refinement is
demonstrated on the approximation of a surface defined analytically on a
square domain:

f = 0.5e−0.16(x2+y2) sin(2x) cos(2y) ,

−5 ≤ x ≤ 5 , −5 ≤ y ≤ 5 .

See that the height range for the above function is [−0.5, 0.5] and the size in
the height direction is 1.

The following error measure is used for mesh refinement,

Ēe =

√
1

Ae

∫
Ae

(f − u)2 dA ,

where f is the exact surface height; u is the height approximation and Ae is
the element area. This error measure Ēe differs from the error (4): Ee is
divided by the element area and the square root is taken. The error indica-
tor Ēe is measured in length units and is regarded as some averaged absolute
error in height over an element.

Figures 5 and 6 show the results of surface approximation by quadratic
quadrilateral elements. Figure 5 shows element quadtrees for two error toler-
ance values: 0.0005 (6 iterations) and 0.0001 (7 iterations). Figure 6 presents
visualization of the approximated surface (error tolerance 0.0005) with the
use of Java 3D.

4 Octree mesh refinement in 3D

An octree subdivision of volume is a three-dimensional generalization of the
two-dimensional quadtree refinement procedure. We assume that an initial
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Figure 6: Visualization of a surface approximated by quadratic quadrilat-
erals.

finite element mesh consists of 20-node hexahedral elements. Figure 7,a
shows the connection of four special refinement elements to one face of an
ordinary element. Some nodes of the special element are moved outside its
volume thus providing continuity across a refinement face.

A face of the special element for 1:4 mesh refinement and a face of the
ordinary element are depicted in Figure 7,b. In the special element, its
volume is connected to the face area 1-3-(5)-7. The local coordinate area
−1 ≤ ξ , η ≤ 1 is also related to the face area 1-3-(5)-7. As in the 2D case,
it is possible to write down a compatibility equations for nodes (2), (4), (5),
(6) and (8). The following modification of the shape functions allows one to
create the special element for 1:4 mesh refinement:

N ′
1 = N1 +

3

8
(N2 + N8)−

3

16
(N4 + N6)−

1

4
N5 ;

N ′
2 = −1

8
N2 −

3

16
(N4 + N6)−

1

4
N5 ;
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Figure 7: a) Connection of four special elements to one face of an ordinary
element; b) Node numbering on faces of a special element and an ordinary
element.

N ′
3 = N3 +

3

4
(N2 + N4) +

1

2
N5 +

3

8
N6 ;

N ′
4 =

3

8
N4 +

1

2
N5 +

1

4
N6 ;

N ′
5 = −1

4
N5 −

3

16
(N4 + N6) ;

N ′
6 =

3

8
N6 +

1

2
N5 +

1

4
N4 ;

N ′
7 = N7 +

3

4
(N6 + N8) +

1

2
N5 +

3

8
N4 ;

N ′
8 = −1

8
N8 −

3

16
(N4 + N6)−

1

4
N5 . (7)

During adaptive mesh refinement with the octree subdivision, special ele-
ments with one, two or three enlarged faces appear in the mesh. Perform
modification of the shape functions of the type (7) for each such enlarged
face.
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5 Conclusion

We have discussed a finite element procedure with quadtree (2D) and octree
(3D) adaptive mesh refinement. In the two-dimensional case, special refine-
ment elements based on quadratic quadrilateral elements are developed. It is
possible to connect two special elements to one edge of an ordinary quadri-
lateral quadratic element. The special refinement element is characterized by
placement of one or two midside nodes outside the element area and by mod-
ification of element shape functions. This helps maintain continuity across
all element edges.

Utilise a local error indicator for the adaptive mesh subdivision. Subdi-
vide elements with excessive local errors into four elements each. After such
subdivisions the element mesh is topologically equivalent to a quadtree. The
quadtree data structure stores element data and enables navigation through
the mesh.

Testing of the proposed finite element quadtree refinement algorithm is
done on a surface height approximation problem. Several refinement itera-
tions are enough for surface approximation with high precision.

Three-dimensional adaptive mesh refinement is based on the octree data
structure. An initial mesh is composed of 20-node hexahedral elements. Four
special refinement elements are connected to one face of the ordinary element
with preserving continuity of sought functions and geometry.

Special refinement elements for the quadtree and octree mesh subdivision
are easy to implement. The presented finite element algorithm can be used
for solution of various problems.
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