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Abstract

The seasonal mean of a climate variable consists of: slow-external;
slow-internal; and intraseasonal components. Using an analysis of
variance-based method, the interannual variability of the seasonal
mean from an ensemble of coupled atmosphere-ocean general circula-
tion model (cgcm) realisations is separable into these three components.
Eigenvalue decomposition is applied to the covariance matrices to ob-
tain, for each component, the dominant modes of variability (eigenvec-
tors) and their associated variance (eigenvalues) for the climate variable.
Here, a method is described that assesses the modes of interannual
variability in cgcms against those obtained from reanalysis data based
on observations. A metric is defined based on the pattern correlation

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/9445
gives this article, c© Austral. Mathematical Soc. 2016. Published February 17, 2016, as
part of the Proceedings of the 17th Biennial Computational Techniques and Applications
Conference. issn 1446-8735. (Print two pages per sheet of paper.) Copies of this article
must not be made otherwise available on the internet; instead link directly to this url for
this article.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/9445


Contents C370

between the observed and modelled modes of variability, and the ratio
of their associated variances. This metric is applied to monthly mean
southern hemisphere 500 hPa geopotential height from the second half
of the 20th century. It is shown that cgcms have clear differences
in the slow-component of modes of interannual variability, related to
external forcings and/or slowly-varying internal variability.
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1 Introduction

The variability of the atmospheric circulation is controlled by many physical
processes, which may act on time scales ranging from days to years. These
processes, on their different timescales, influence the interannual variability
of the seasonal mean of a climate variable [1]. Consequently, a seasonal mean
climate anomaly is considered as a statistical random variable consisting of
signal and noise components [2]. The signal is related to slowly varying (a
season or longer) processes and is considered the slow component of interannual
variability of the seasonal mean [3]. In a coupled atmosphere-ocean climate
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system, this signal may be due to either slowly varying internal dynamics,
or to changes in external forcing, for example, changing greenhouse gas
concentrations. The noise is related to internal dynamics with intraseasonal
time scales of about 14–90 days. Zheng and Frederiksen [3] referred to this
noise as the intraseasonal component of the seasonal mean.

Zheng and Frederiksen [3] formulated a method for estimating the statistical
modes of interannual covariability of the slow and intraseasonal components.
Using monthly mean data, the interannual covariability of the seasonal mean
was estimated by second moments. The application of the seasonal mean
operator separated the signal and noise components, and the result was
equivalent to using raw daily data, filtered or unfiltered [1].

Frederiksen and Zheng [4] applied the method of Zheng and Frederiksen [3]
to the southern hemisphere 500 hPa geopotential height field in reanalysis
data. They found that the leading modes, or coherent patterns, of the slow
component of interannual variability were associated with the High Latitude
Mode, and with the atmospheric response to the El Niño-southern oscillation
(enso). Grainger et al. [5] developed a method to assess these modes of
interannual variability in coupled atmosphere-ocean general circulation models
(cgcms) from the World Climate Research Program (wcrp) Coupled Model
Intercomparison Project phase 3 (cmip3) dataset [6]. In this article, we
extend the previous analysis to cgcms in the more recent Coupled Model
Intercomparison Project phase 5 (cmip5) dataset [7]. The performance of
cgcms between the two datasets is examined, and a new metric is defined to
give an overall ranking of model performance.

2 Separation of variability

Given the conceptual model described in Section 1, the separation of the
interannual variability of the seasonal mean into signal and noise components
is possible given at least monthly data [1, 8]. Here, we assume that we have
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monthly mean data on a spatial grid for an ensemble of model realisations.
In this case, after the annual cycle is removed, the monthly mean anomaly of
a climate variable x at any grid point is [8]

xsym = βy + δsy + εsym , (1)

where s = 1, . . . ,S is the realisation number in an ensemble of size S, y =
1, . . . , Y is the year index in a sample of Y years and m = 1, 2, 3 is the month
index in a season. The slow-external component, independent of realisation,
is βy, δsy is the slow-internal component, taken to be constant over a season,
and the intraseasonal component εsym is the residual monthly departure
of xsym from the slow components. Here, we are interested in the time series
of the slow component, that is,

µsy = βy + δsy . (2)

Zheng and Frederiksen [3] showed that it is possible to estimate covariance
matrices for the slow and intraseasonal components of the interannual vari-
ability of the seasonal mean. The total seasonal mean covariance is estimated
as the sum of the covariances of the external and internal components [8],
that is,
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where x1sym and x2sym are the time series at any two grid points in the set i =
1, . . . , I , the subscript ◦ denotes an average over an index s,y or m, and V̂
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and the covariance of the slow-external component by
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where
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is the ensemble mean seasonal mean covariance. In the special case of a single
model realisation, that is S = 1, it is not possible to separately estimate the
external and internal covariances; instead, the total seasonal mean covariance
is estimated directly from equation (6).

For the intraseasonal component, Zheng and Frederiksen [3] showed that the
covariance is able to be estimated as a function of monthly moments. In this
case,

V̂(ε1sy◦, ε
2
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9
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]
, (7)

where
α̂ = a/[2(1− φ̂)] (8)

is the covariance of the intraseasonal components within each month, and

φ̂ = (a+ 2b)/[2(a+ b)] , 0 6 φ̂ 6 0.1 , (9)

is the intermonthly correlation between consecutive months. The covariance
and intermonth correlations of the intraseasonal components are assumed to
be independent of months within a season. The two monthly moments are
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The interannual covariance of the slow component is defined as the residual
of the total seasonal mean covariance after the removal of the covariance of
the intraseasonal component, that is,

V̂(µ1sy,µ
2
sy) = V̂(x

1
sy◦, x

2
sy◦) − V̂(ε

1
sy◦, ε

2
sy◦) . (12)

For all components, (I× I) covariance matrices are obtained by applying
equations (3), (7) and (12) to all pairs of grid points. The modes of interan-
nual variability of each component are defined as the empirical orthogonal
functions (eofs) obtained by eigenvalue decomposition of the corresponding
covariance matrix, in descending order by variance explained [9]. The leading
eigenvectors give the dominant modes of variability for each component, and
the corresponding eigenvalues give the estimated variance associated with
each mode.

3 Model assessment

The centred mean square difference between reference and model samples
is [5]

E ′ = V̂ + V̂ ′ − 2
√
V̂
√
V̂ ′C , (13)

where C is the correlation between the two samples, and V̂ and V̂ ′ are the
estimated reference and model sample variances, respectively, for example
the eof associated variances defined in Section 2. Based on this, Grainger et
al. [10] proposed a score for how well a cgcm reproduces the jth reference
slow component mode of variability (slow-eof):
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2
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where Rj is the pattern correlation between the model and reference slow-
eofs and Rjsst is the pattern correlation between the model and reference
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slow sea surface temperature (sst)–height covariance patterns. The method
for calculating the slow sst–height covariance patterns is analogous to the
covariance methodology in Section 2, and is detailed by Grainger et al. [11].

The application of equation (14) requires a one to one match between model
and reference slow-eofs. This is obtained by the following procedure.

1. For the leading J reference slow-eofs, find the permutation of the
leading J model slow-eofs which maximises

J∑
j=1

|Rj|
(
1+ Rjsst

)2
.

2. For each j = 1, . . . , J reference mode, first check for higher order, that
is, > J model modes with a higher score M ′µ > Mj

µ . Then check all
model modes for ambiguous scores, defined as M ′µ > 0.75Mj

µ .

3. If higher order or ambiguous modes are identified, manually inspect the
model slow-eofs to resolve the one to one match.

4 Application

To illustrate the methodology, slow-eofs of 500 hPa geopotential height for
the southern hemisphere summer (December-January-February, djf) and
winter (June-July-August, jja) are examined. cgcm data were obtained
from the wcrp cmip3 [6] and cmip5 [7] multi-model datasets. Data from
the Twentieth Century Reanalysis Project (20cr) [12] for the period 1951–
2000 was used as the reference dataset. Observed sst data were obtained
from the hadisst dataset [13]. All 500 hPa geopotential height data were
mapped to a 2.5◦ × 2.5◦ latitude/longitude grid, and sst data to a 2◦ × 2◦
latitude/longitude grid.
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Figure 1: (a) Leading three slow-eofs (normalised to unit length) of 20cr
southern hemisphere 500 hPa geopotential height for djf for the period
1951–2000. (b) Slow sst–height covariance (mK) with hadisst sst for
the slow-eofs in (a). The estimated standard deviation (m) and variance
explained (%) are given bottom left in (a) for each eof.

The leading three slow-eofs of 20cr southern hemisphere 500 hPa geopoten-
tial height in djf and jja are shown in Figures 1 and 2, respectively. In both
seasons, the leading slow-eof represents high latitude variability associated
with the southern annular mode [4]. There is a protrusion into the South
Pacific, particularly in jja (Figure 2(a)). Slow-eofs 2 and 3 in both seasons
represent variability associated with enso [4], evident in the slow sst–height
covariances (Figures 1(b) and 2(b)), which show a strong relationship with
tropical Pacific ssts.
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Figure 2: (a) Leading three slow-eofs (normalised to unit length) of 20cr
southern hemisphere 500 hPa geopotential height for jja for the period 1951–
2000. (b) Slow sst–height covariance (mK) with hadisst sst for the slow-
eofs in (a. The estimated standard deviation (m) and variance explained (%)
are given bottom left in (a) for each eof.

The matching slow-eofs were estimated for the same period using the ensem-
ble over all realisations for each of the 23 cmip3 and 45 cmip5 models which
were available. The model slow-eofs were then evaluated against the 20cr
slow-eofs (see Section 3) using J = 3. For each season, an overall score is
calculated by

Msss
µ =

1

3

3∑
j=1

Mj
µ , (15)

where sss denotes a season, that is djf or jja. The overall scores thus
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calculated are shown in Figure 3 for all models for both seasons. In order
to rank the cgcms, a weighting based on their relative spread within each
season is used, that is,

Mtot
µ =Mdjf

µ + 2.2Mjja
µ . (16)

In djf (Figure 3(a)), there is fairly consistent performance across most models,
with many models having an overall score > 0.4 . In contrast, the cgcms
reproduce the 20cr jja slow-eofs (Figure 2) less well, with only two cgcms
having an overall score > 0.4 . Figure 3 also shows that the performance of
cmip5 cgcms has improved relative to cmip3, with generally higher overall
scores in both seasons.

5 Conclusions

In this article, a method was formulated to assess the skill of climate models
in reproducing the leading slowly varying modes of interannual variability of
the seasonal mean. The method was applied to southern hemisphere 500 hPa
geopotential height. Coherent spatial patterns, reperesented by the slow-eofs,
of interannual variability for summer (djf) and winter (jja) were estimated
for the cmip5 and cmip3 datasets for the period 1951–2000. These were
assessed against reference slow-eofs from 20cr data for the same period.

The 20cr slow-eofs are best reproduced in djf. The slow-eofs are less
well reproduced in jja. The spread of results in both seasons enables the
definition of a metric ranking model overall performance. There are clear
improvements in the cmip5 dataset over cmip3 during both summer and
winter. The largest individual improvements (not shown) in cmip5 cgcms
are in the spatial structures of the slow-eofs related to enso variability and
their slow sst–height covariances.

The method developed in this article is generally applicable to any climate
variable for which the interannual variability of the components are separable.
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Figure 3: Model overall score (equation (15)) for (a) djf and (b) jja for all
cmip3 (blue) and cmip5 (red) cgcms. Models are shown in order of the
total overall score (equation (16)).
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The slow-eofs of northern hemisphere 500 hPa geopotential height in cmip5
models will be assessed. The method is able to track improvements in
the interannual variability of future multi-model datasets as they become
available.
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