
ANZIAM J. 46 (E) ppC47–C58, 2005 C47

Flow focusing in microchannels
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Abstract

A volume-of-fluid numerical method is used to predict the dynam-
ics of drop formation in an axi-symmetric microfluidic flow-focusing
geometry for a liquid-liquid system. The Reynolds numbers and We-
ber numbers approximate those of a three-dimensional flow in recently
published experiments. We compare the predicted drop formation
with the experimental results at various flow rates, and discuss the
mechanisms of drop formation in this context. Despite the differences
in geometry, we find qualitative correspondence between the numer-
ical and experimental results. Both end-pinching and capillary-wave
instability are important for droplet break-up at the higher flow rates.
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1 Introduction

The continuous manufacture of emulsions which have defined micron scale
droplet sizes are paramount to the successful market acceptance of many
products within the food, cosmetic, pharmaceutical and photographic indus-
tries. An understanding of the deformation history and breakage of drops of
one liquid within another liquid is thus of vital importance. Flow focusing
of a continuous stream of liquid is one way of creating such drops. In this
procedure the drop liquid flows as a stream in the middle of a channel and
is surrounded by a second immiscible liquid flow. Both liquids are forced
to flow through a small calibre contraction or orifice located downstream.
The flow rate of the surrounding fluid is typically greater than that of the
droplet stream which is consequently forced into a thin filament within or
downstream of the contraction where it breaks into droplets. The method
offers a high degree of control over the velocity gradients experienced by the
fluid to be dispersed and is suitable for use at the micron scale.

Very few studies have been published on flow focusing induced liquid
droplet formation and there appears to be no numerical modelling of it.
Experiments have demonstrated the use of flow focusing to create monodis-
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Figure 1: Cylindrical flow geometry.

persed micron sized droplets in a gas stream [3] and bubbles in a liquid
stream [4]. Nisisako et al. [5] demonstrated a method for generating droplets
in a liquid at a micro-sized T-junction. Anna et al. [1] presented a range of
droplet formation behaviour from experiments in a microfluidic flow-focusing
device of rectangular cross-section in which the inner and outer streams were
water and oil, respectively. In this paper, numerical simulations of two-
dimensional axi-symmetric flow focusing are undertaken for conditions ap-
proximating those of the three-dimensional flow in [1]. The calculations use a
volume-of-fluid (vof) finite volume technique. The predicted drop formation
is compared qualitatively with the experimental results at various flow rates,
and the mechanisms of drop formation in this context are discussed.

2 Formulation

Consider a cylindrical pipe of radius a containing an abrupt cylindrical con-
traction of radius ac and length Lc (Figure 1). Two coaxial immiscible liquid
streams enter the cylinder through 0 ≤ r ≤ ai (inner stream) and ai < r ≤ a
(outer stream) with mean inner and outer velocities V̄i and V̄o, respectively.
Hereafter, subscripts i and o denote the inner and outer fluids, respectively.
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The axi-symmetric evolution of the interface between these two streams is
investigated from an initial state in which the flow geometry is initially com-
pletely filled with outer fluid. We assume that the interface never attaches
to the channel walls (that is, the wall is non-wetting with regard to the inner
fluid) since that appears to be the case in the experiments of Anna et al. [1].

In terms of dimensionless velocity, length and time, scaled according to V̄i,
a and a/V̄i, respectively, the equations of motion for a vof calculation are

∂C

∂t
+∇ · (UC) = 0 , (1)

∂ρU

∂t
+∇ · (ρUU) = −∇P +

1

We
FS +

1

Re
∇·τ , (2)

∇·U = 0 , (3)

ρ = ρiC + ρo(1− C) , (4)

where C is a fractional volume function, P denotes pressure, τ is the viscous
stress tensor and FS is the surface force arising from interfacial effects. The
gravitational force has been ignored as it is negligible compared with the
surface force at the micron scale. The fractional volume function C is ad-
vected with the local velocity U. The above equations correspond to the flow
of a mixture with variable properties (density ρ and viscosity µ), combined
with advection of the volume fraction. The mixture takes the local fluid
properties, with a volume fraction weighted average in computational cells
containing the interface. The density and viscosity are obtained according
to Equation (4). The interface position is determined implicitly at any time
by consideration of the volume fraction distribution.

The dimensionless parameters in Equations (1–3) are the Weber and
Reynolds numbers,

We =
ρrV̄

2
i a

σ
, Re =

ρrV̄ia

µr

, (5)

respectively, where ρr and µr denote reference values of density and viscosity,
respectively, and σ is the coefficient of interfacial tension between the two
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liquids. Here, the density and viscosity of the inner fluid are the reference
values.

The vof algorithm of Rudman [7], modified to ensure that the interface
never attaches to the wall, is used to solve Equations (1–3). The method
to advect C is based on the volume tracking method of Youngs [10] as de-
scribed in [7]. The surface force FS is represented using Rudman’s improved
implementation [7] of the csf method [2]. Axi-symmetric flow calculations
are performed in cylindrical polar coordinates on the symmetric half of a
computational domain with 64 mesh cells spanning the cylinder radius a.
The radial velocity in the leftmost row of cells at flow entry is set to zero
to numerically pin the contact line between the two fluids at the entrance.
Each stream is assumed to enter the flow domain with a uniform velocity
profile. The choice of velocity profile is not expected to be important for
the low Reynolds numbers encountered in micro-channel flow. The length of
the domain is chosen to be 5a or 10a, depending on the distance required
for droplets to form. Increasing the number of cells in each direction by
50 per cent resulted in calculated interfaces which were almost coincident in
test cases, with minor differences sometimes occurring close to droplet pinch-
off. Further grid refinement was not practical because the computation time
required exceeds the resources available.

3 Results and Discussion

A 1:4 contraction (ac/a = 0.25) of length Lc/a = 1.25 , located at one cylinder
radius downstream, is considered. The entry radius of drop liquid is taken
to be ai/a = 0.5 . The flow focusing experiments of Anna et al. [1] in micro-
channels of rectangular cross-section are the guide for the present choice of
flow parameters. In that experiment, water drops are formed in oil laden
with surfactant for which ρo/ρi = 0.9 and µo/µi = 6 . Values of the Reynolds
and Weber numbers (Eqn. 5) are chosen so that corresponding values based
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on velocity and radius in the contraction are the same as those in the orifice
of the experiment [1]. In evaluating these parameters it is assumed that
a = 80 µm and σ = 0.01N/m . For the experiment, the Ohnesorge number
Oh = We1/2/Re is fixed as it depends only on the fluid properties and the
length scale. For the present calculations Oh = µi/(ρiσa)1/2 = 0.033 .

Figure 2 shows selected drop breakup sequences when the ratio of vol-
umetric flow rates of the inner and outer streams Qi/Qo = 0.25 . Figure 3
shows corresponding results for Qi/Qo = 0.025 . The labels (c), (d), (f) in
Figure 2, and (i), (j), (l) in Figure 3 correspond to cases so labelled in the
experiment in so far as the Reynolds and Weber numbers local to the contrac-
tion are the same as in the experiment. Other such cases were also simulated
but are not presented here. The description of experimental results by Anna
et al. [1] is somewhat sketchy but they do report breakup within the orifice
for Case (i) when Qi/Qo = 0.025 and for a case corresponding to Re = 0.089
and We = 0.87 × 10−5 (lower than in Case (c)) when Qi/Qo = 0.25 . Here,
breakup is predicted within the contraction for both Cases (c) and (i).

We explain the breakup in Cases (c) and (i) as follows: In both cases the
effect of interfacial tension is so large that the inner fluid almost completely
fills the width of the contraction in a capsule-like formation. Consequently
the outer fluid, which has the greater flow rate, must flow along a thin annular
region close to the wall. This results in a large axial drag which accelerates
the inner liquid within the contraction until its flow rate therein exceeds
the fixed rate of supply from the cylinder inlet. This causes a neck to form
followed by breakup in a manner analogous to breakup of a pendant drop
under a gravitational force. We refer to this as drag-induced breakup. The
detatched fluid capsule (drop) rapidly assumes a spherical shape as it clears
the end of the contraction, again because of the high interfacial tension forces.

Anna et al. [1] report the formation of drops approximately the size of the
orifice for Cases (c) and (d); however, inspection of the images in their phase
diagram of drop formation suggests the drops are somewhat larger than the
orifice diameter, similar to that predicted here. Smaller drops were observed
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Figure 2: Selected drop breakup sequences for stream flow rate ratio
Qi/Qo = 0.25 . The Cases (c), (d) and (f) correspond roughly to cases so
labeled in Figure 3 of [1]. View the animation movies for Case (c), Case (d)
and Case (f) by clicking on these names.

http://anziamj.austms.org.au/V46/CTAC2004/Davi/movie_c.avi
http://anziamj.austms.org.au/V46/CTAC2004/Davi/movie_d.avi
http://anziamj.austms.org.au/V46/CTAC2004/Davi/movie_f.avi
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Figure 3: Selected drop breakup sequences for stream flow rate ratio
Qi/Qo = 0.025 . The Cases (i), (j) and (l) correspond roughly to cases so
labeled in Figure 3 of [1]. View the animation movies for Case (i), Case (j)
and Case (l) by clicking on these names.

http://anziamj.austms.org.au/V46/CTAC2004/Davi/movie_i.avi
http://anziamj.austms.org.au/V46/CTAC2004/Davi/movie_j.avi
http://anziamj.austms.org.au/V46/CTAC2004/Davi/movie_l.avi
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by Anna et al. for the lower flow ratio Qi/Qo = 0.025 and this effect is
replicated here in the predictions (Figure 3). Also observed experimentally
was the formation of a small satellite drop in Cases (i) and (j). This is
also predicted here but the satellite subsequently coalesces with the primary
drop in each case. This occurs because the primary drop moves more slowly
than the continuous phase, whereas the much smaller satellite drop almost
matches the continuous phase velocity. Multiple smaller drops were observed
for Case (l) but only a single satellite is predicted. A satellite drop is also
predicted for Case (f). However, the calculations for (f) and (l) do not
proceed far enough to show coalscence. Anna et al. observe the formation
of both monodisperse and polydisperse droplets, with higher Reynolds and
Weber numbers and lower Qi/Qo values favouring the polydisperse regime.
In contrast, a feature of every prediction here is the repeated formation at
regular intervals of identical drops (apart from small satellite drops); this is
more apparent in the animations.

In Cases (d), (f) and (l), breakup occurs in the expansion downstream of
the contraction and factors other than drag can be important in that event.
One of these is the phenomenon of end-pinching (Stone et al. [8], Stone and
Leal [9]) which can occur when the stretching of a fluid thread is abruptly
stopped as occurs (approximately) when the drop fluid exits the contraction
and enters the expansion. As explained in [8] and [9] interfacial tension causes
the end of the drop fluid to form a bulb; a waist then forms behind it leading
to a localised pressure increase there and a consequent pressure driven flow
out of the waist or neck which eventually pinches off. This process is opposed
by flow out of the bulb (resulting from a pressure increase therein due to bulb
curvature) which favours the retraction of the bulb towards the neck region
(see also [6]).

Capillary-wave instability may also be important in Cases (d), (f) and (l).
Stone and Leal [9] report growth times for various initial disturbance ampli-
tudes on an infinite stationary fluid cylinder in a second otherwise stationary
fluid. The values given are the times for a capillary wave to grow to half
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the cylinder radius. In terms of the present scaling, the dimensionless cap-
illary growth times for an inner/outer fluid viscosity ratio of 0.1 (compared
with 0.17 in the present calculations) are found to be in the ranges 0.06–0.28,
0.36–1.6 and 0.036–0.16 for Cases (d), (f) and (l), respectively. These are less
than or are comparable to the corresponding dimensionless times (1.49, 2.68,
0.16) to breakup measured from when the drop fluid enters the expansion
(leaves the contraction). Consequently, we expect capillary-wave instability
as well as end-pinching to contribute to breakup in these cases. Indeed, cap-
illary waves are visible behind the bulb in Cases (d) and (f), and to a lesser
extent in (l).

Like Cases (c) and (i), Case (j) in Figure 3 also show breakup within
the contraction. Necking first occurs within the contraction (see for example
t = 0.58) and this is thought to be an incipient drag-induced breakup event.
However, breakup occurs right at the end of the contraction (beginning of an
expansion) so end-pinching seems likely to be an important effect in Case (j).
The occurrence of multiple necking prior to breakup suggests that capillary-
wave instability also plays a role. Indeed, the capillary growth time, as
calculated above, ranges from 0.006 to 0.027, and Figure 3 suggests that the
primary drop breaks off at a time less than 0.01 after reaching the end of the
contracton. This suggests that the capillary growth time is comparable to
the time to achieve end-pinching in this case as well.

Figures 2 and 3 each show the effect of increasing total flow rate, but
at two different inner/outer flow ratios. Cases (c) and (i), which have the
lowest total flow rates presented here, show a capsule-like formation within
the contraction because of the dominating effect of interfacial tension, as
discussed above. As the overall flow rate increases, the inner fluid reaches
the contraction more quickly as is expected. Cases (d) and (f) both show the
bulb behind the thread connecting the primary drop prior to pinch-off. The
rear bulb is more elongated in Case (f) than in Case (d) because interfacial
tension effects are less at the larger flow rate. Bulb formation behind the
neck is barely visible in Case (l) of Figure 3. Presumably this occurs because
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the outer/inner flow ratio in Figure 3 is much larger (leading to greater
shear rates) than in Figure 2. For the same reason, the inner fluid stream
is stretched thinner in Cases (j) and (l) than their Figure 2 counterparts
(d) and (f).

4 Conclusion

A volume-of-fluid numerical method has been used to predict the shape evo-
lution of the interface between two immiscible liquid streams, directed con-
centrically into a cylinder containing a 4:1 contraction of diameter. Predic-
tions are based on Reynolds and Weber numbers in the contraction which
are the same as those for the microfluidic flow focusing experiments of [1].
The experimental flow field is three-dimensional in a device with rectangular
cross-section, whereas the numerical calculations are for axisymmetric flow in
a geometry of cylindrical cross-section. Despite the differences in geometries,
qualitative correspondence is found between the theoretical and experimental
results. We conclude that the mechanisms for droplet breakup range from
drag-induced at the lowest flow rates when breakup occurs inside the con-
traction, to end-pinching and capillary-wave instability at higher flow rates
when breakup occurs downstream of the contraction.
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