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Selection bias in plots of microarray or other
data that have been sampled from a

high-dimensional space

J. H. Maindonald∗ C. J. Burden†
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Abstract

For data that have many more features than observations, finding
a low-dimensional representation that accurately reflects known prior
groupings is non-trivial. Microarray gene expression data, used to
create a “signature” or discrimination rule that distinguishes cancer
tissues that are classified according to type of cancer, is an important
special case. The optimal number of features is suitably determined
using cross-validation, in which each of several parts of the data be-
comes in turn the test set, with the remaining data used for training.
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At each such division or “fold” of the data into a training and test set,
both the selection of features and the derivation of the discriminant
rule must be repeated. Use of the complete data for prior selection
of features can lead to a grossly optimistic assessment of predictive
accuracy and, in scatter-plot graphs that show discriminant function
scores, to a spurious or exaggerated separation between groups. At
each division or fold, a second versus first discriminant axis plot of test
scores can be drawn. This paper presents a method for bringing these
different plots, which have different choices of features and relate to
different coordinate systems, into a single plot in which the configura-
tion of points fairly reflects the accuracy of the discriminant procedure.
The methodology is applicable, in principle, to use of any discriminant
analysis methodology, or of ordination or multidimensional scaling, for
obtaining a low dimensional graphical representation of data.
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1 Introduction

Data sets from microarray experiments typically have values of each of a large
number of features (expression indices, or ‘genes’), for each of a small number
of biological samples (observations). More than 10,000 genes are common,
while the number of samples may run from one to several hundred. The
present discussion assumes that there are enough samples to allow a useful
classification into groups, which in our examples will be different tissue types,
and discriminant rules developed. A low-dimensional view that fairly reflects
the performance of a discriminant rule can draw attention to samples that
seem to be misclassified, or to apparent groupings other than those used in
determining the rule, or to aberrant observations.

The acute lymphoblastic leukemia (all) data used for illustrating the
methodology has n = 24 samples, grouped into g = 4 tissue types or
sources — B-cell females (6 samples), B-cell males (11 samples), T-cell fe-
males (1 sample) and T-cell males (6 samples). The data used in most of
the subsequent discussion is a matrix of expression values that has dimension
m = 4190 features by n = 24 observations (samples).

With 24 samples and four groups, a maximum of 20 features can be used
for the discriminant analysis, with some smaller number than 20 likely to
be optimum. There is a cogent case for giving preference to features that
individually show the greatest discriminatory power, on the grounds that
they hold information that should be retained and represented in any plot.
Here the F -statistic (with 3 and 20 degrees of freedom) will be used, though
noting that other statistics might be used to similar effect. The n features
are chosen whose F -statistics are largest, with n chosen to give maximum
predictive accuracy.

Canonical discriminant analysis, as used in this paper, is a generalization
of linear discriminant analysis. It can in principle, given sufficient data,
determine up to g − 1 axes of discrimination between g groups, yielding a
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matrix of discriminant function scores C that has at most g−1 columns. The
ordering of columns reflects order of effectiveness in separating groups, and
most of the relevant information is often in the first few columns. The first
discriminant function gives the best discrimination in a single dimension, the
second function the next best discrimination subject to being uncorrelated
with previous linear discriminants, and so on.

The implementation used here is set in a Bayesian framework [7, pp. 92–
105], and yields posterior probabilities of membership of the several groups.
Let πj be the prior probability that an observation belongs to the jth group,
by default set equal to the proportion of observations in the jth group. The
Bayes rule chooses the group j for which the distance, less −2 log(πj), in the
space of the linear discriminant functions, is a minimum. When calculations
have been completed for all folds, there is a predicted group assignment for
each observation to be compared with the correct assignment. The accu-
racy is obtained by dividing the number of correct assignments by the total
number of assignments.

Use of the magnitude of the F -statistic to determine the features that will
be used as discriminators involves a trade-off between the risk of omitting
genuine discriminators and the risk of including features whose F -statistics
are near the extreme of the empirical distribution for the null. Commonly,
some features will be chosen whose F -statistics are near the extreme of the
empirical distribution for the null, leading to inevitable biases for graphical
representation of the data used to derive the F -statistics. The comparison
between a graph derived from random normal data in the left panel of Fig-
ure 1, and from the previously mentioned all (acute lymphoblastic leukemia)
microarray data in the right panel, illustrates the extent of the problem. The
separation between groups in the left panel is clearly spurious, while that in
the right panel may in part be real.

These issues are important for the use of any supervised learning ap-
proach with data where the number of features greatly exceeds the number
of observations. Our methodology can be extended for use with other ap-
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Figure 1: For the left panel, random normal data were placed in an array
of dimension 4190 columns by 24 rows, where the rows are observations
(tissue samples) and the columns are features (genes). The 24 columns were
assigned to four different groups (notional “tumor types”), with frequencies 6,
11, 1 and 6 as for the microarray data that are described in the text. An
anova F -test identifies the features that best separates the data into the four
groups. For the right panel, the same procedure is applied to the microarray
data described in the text.



1 Introduction C64

proaches, though with varying complication in the ease of adaptation to give
an acceptably accurate low-dimensional representation.

In [3], a subset of samples were from all tissues, as for the data that
we have used. In that paper, the classification of all samples into B-type
and T-type samples was based on the use of numerically based class discovery
procedure that, up to that point, had recognized only the broader distinction
between aml (Acute Myoblastic Leukemia) and all (Acute Lymphoblastic
Leukemia). A two-dimensional graphical representation, such as we propose,
might have been used instead. Additionally, such a graph has the potential
to reveal previously unsuspected groupings, or to draw attention to mis-
classified samples.

Pre-processing and selection of data The 24 samples analyzed here
are a subset, described as having “normal” cell genetics, from the much
larger data set, described in [2], that relate to [1]. Additionally, the initial
12625 features were “filtered”, without regard to the grouping into tissue
types, removing features where the variation fell below a threshold. Following
this filtering, 4190 features remained.

It is widely assumed that such filtering does not introduce a bias, for
example, exaggerating separation between groups that are genuinely present,
for use of the filtered data. Our methodology readily adapts, as will be
described in the final section, to allow a check of this assumption.

2 Training/test sets, and cross-validation

Where observations (tissue samples) are split into a training set A and a test
set B, the spurious clustering that is evident in the left panel of Figure 1
does not occur for a plot that shows the discriminant scores for the test data
(B) alone. The crucial point is that the test data had no role in either the
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Table 1: The table illustrates the division of a data set into four parts (one
part per column) for purposes of running a cross-validation. At fold i, the
scores on the training data (that is, for all except the ith part of the data)
are stored in Zi, while the scores on the test data are stored in Z−i. At each
fold, the scores and predicted group memberships for the current test data
give an accurate indication of the performance of the discriminant rule.

Part 1 Part 2 Part 3 Part 4
test (Z−1) train (Z1) train (Z1) train (Z1) Fold 1
train (Z2) test (Z−2) train (Z2) train (Z2) Fold 2
train (Z3) train (Z3) test (Z−3) train (Z3) Fold 3
train (Z4) train (Z4) train (Z4) test (Z−4) Fold 4

selection of features, or the determination of the discriminant functions and
associated scores. By making B the training data and using A as the test
data, a similar plot is obtained that is now limited to the data in A. The
two plots will use different features and different discriminant functions, and
cannot be simply superposed. Our method combines them into a single plot,
albeit in the context of the more general cross-validation approach, where
data are split in k parts.

For each i = 1, . . . , k in turn, the ith part becomes the test data, with the
remaining data used for training. Table 1 summarizes the steps that would
be followed, though for simplicity of presentation with k = 4 rather than
with the more usual k = 10 . A further possibility is to use leave-one-out
cross-validation, so that our data would have k = 24 . At each fold, scores,
in as many dimensions as are required, will be calculated for the test data
for that fold.

Note that there are two steps in the development of a discriminant rule:

• Select the features that give the best discrimination;
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• Determine a discrimination rule.

The cross-validation must take account of both steps in this process, that
is, the selection of features must be repeated at each fold. As a check on
the effect of any filtering or other pre-processing steps, these may also be
repeated at each fold.

At the ith fold, there are two sets of scores — scores Zi that if used to
assess predictive accuracy or plotted will give a biased assessment of perfor-
mance, and scores Z−i that give a fair assessment. A remaining task, that
will be addressed below, is to approximate the scores Z−i in a common global
coordinate system, allowing all scores to be plotted on the one graph. With
ni test observations in the ith fold, the matrix Zi will be n−ni by p and Z−i

will be be ni by p, where p may be taken to be 2 or 3.

At each fold the procedure predicts, for observations in the test data,
the group to which the observation should be assigned. When calculations
have been completed for all folds, there is a predicted group assignment
for each observation to compare with the correct assignment. Obtain the
accuracy by dividing the number of correct assignments by the total number
of assignments.

The optimal number of features is determined by repeating the cross-
validation procedure for each of a range of numbers of features, then choos-
ing the number that gives the greatest predictive accuracy. In the present
instance, where the number of observations is small and there is substan-
tial variation from one cross-validation run to another, the cross-validation
procedure is repeated five times for each choice of number of genes, with a
different random split of the observations into k = 10 parts at each run.

Figure 2 (blue points and curve) summarizes results. Failure to reselect
features at each cross-validation fold gives the clear bias shown by the gray
points and fitted curve. The resubstitution measure (in red), obtained by
using all data set both for training and testing, must inevitably increase
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Figure 2: The blue points and curve are from the full cross-validation (cv)
accuracy assessments. The fitted spline curve suggests that the optimum
choice of number of features is 8 or 9, though accuracy does not vary greatly
in a range of 2 or 3 either side of that figure. For the gray points and curve,
and the red points, see text.
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as the number of features is increased. Figure 1 corresponds to the red
point for n = 9 . Thus if Figure 1 accurately reflected the discriminatory
power, canonical discriminant analysis would give a rule that has the grossly
optimistic 96% predictive accuracy that is shown for the red point at n = 9
in Figure 2.

3 Approximation of test scores in a common

coordinate system

The idea is to use the scores on the training data, for each fold, in order
to make a connection with scores that are derived for the data as a whole.
There are several ways that such global or common scores might be derived.

• Average over the scores that have been derived for the k folds.

• Replace the m features by at most n sets of principal component scores,
use these as data for a discriminant analysis that uses all observations,
and calculate discriminant function scores.

• Using all observations, select the subset of features that have the largest
F -statistics, and use these for a discriminant analysis. Scores from this
analysis are then used as the global scores.

However derived, the global score matrix will be written G. The matrix that
holds scores for the subset of observations that are included in the training set
for the ith fold will be written Gi. Thus the rows of the matrices Gi and Zi

relate to the same observations.

Calculations proceed by finding, for each i = 1, . . . , k , the transforma-
tion Mi such that ZiMi best approximates Gi in a least squares sense, that
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is, Mi is chosen to minimize the trace of

(Gi − ZiMi)
′(Gi − ZiMi) .

Next, for each i = 1, . . . , k , calculate

Ci = Z−iMi ,

where Ci is an ni by p matrix. Merging the rows of the Ci (i = 1, . . . , k)
gives an n by p matrix C. Columns of C are then, in order, “global” cross-
validation scores for the first, second, . . . , discriminant functions, and pair-
wise plots are made as required.

Examples of the use of the methodology

Figure 3 essentially reproduces Figure 1, but here using the cross-validation
scores. The left panel now shows, correctly, no discrimination between the
groups. More importantly, the right panel shows, by comparison with Fig-
ure 1, very little discrimination between groups.

Figure 4 is for data where our procedure shows a clear separation into
groups. The interest lies in whether the all tissues that were used in [3] could
be further subdivided according to the sex of the patient and the source of
the tissue — bone marrow or peripheral blood.

4 Commentary and extensions

Clearly, the linear transformations Mi introduce unwanted and perhaps un-
avoidable noise into the global positioning of points.

An important question is whether the filtering that determines the re-
duced set of features used for the analysis may itself bias predictive accu-
racy. This can be checked by working with the total set of 12165 features
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Figure 3: Graphs are for the same data as described in Figure 1. Our
cross-validation procedure is followed, with the local discriminant scores
transformed back to global discriminant axes, to give the columns of the
matrix C. The plot on the left is for random data, whereas the plot on the
right is for the same all microarray data as in Figure 1.
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Figure 4: For the all data [3] that were the basis for this graph, there is a
clear separation into two groups, with one sample that stands apart.



4 Commentary and extensions C72

and repeating the filtering procedure at each fold of the cross-validation. It
is sufficient to check that the filtering has no effect on the choice of features
at the several folds of the cross-validation.

The matrices Mi represent affine transformations. An alternative is to
combine a rigid transformation with shift and dilation, using Procrustes
transformations [8]. With the relatively small number of observations used
in this paper, an affine transformation seems to give a better approximation.
Details will be given elsewhere.

The approach readily generalizes to any technique that yields a ranked
set of columns of discriminant function scores, as for canonical discriminant
analysis. Support Vector Machines are not obviously designed to allow a
low-dimensional representation, so that their use in this context requires
adaptation. Where optimal discrimination requires more than two or three
features, multi-dimensional scaling or an ordination technique makes it pos-
sible to approximate results in a low-dimensional space, though with the
caveat that any low-dimensional representation risks loss of information.

Principal components and other ordination techniques are likewise prone
to discrimination based selection effects, though as there is no attempt to
choose axes that optimally exhibit the separation between groups, the bias
should be less extreme. The present methodology can be adapted for use
with these methods also. With some extension, it might be used with the
biplot methodology [6]. The first two or three principal components, for the
total data, determine the coordinate system that will be used for the global
graphical representation. Principal components results from the successive
folds of the cross-validation are represented in this global coordinate system.

Acknowledgments: We thank Yvonne Pittelkow and Susan Wilson for
helpful comments. John Maindonald’s research was supported by ARC grant
DP0343727.
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A Computer implementation

We use the R system [4]. Principal components calculations use functions
that are available in R for the singular value decomposition. Discriminant
function calculations use the function lda() from Venables and Ripley’s
mass package for R. For obtaining the transformations Mi, we use the R func-
tion qr.solve(). An R Sweave [5] file that may be used to reproduce the
calculations, graphs and associated commentary will be posted on the web,
at http://www.maths.anu.edu.au/~johnm/r/cvplot
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