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Abstract

A derivative free frame based method for minimizing C* and non-
smooth functions is described. A ‘black-box’ function is assumed with
gradients being unavailable. The use of frames allows gradient esti-
mates to be formed. At each iteration a ray search is performed either
along a direct search quasi-Newton direction, or along the ray through
the best frame point. The use of randomly oriented frames and ran-
dom perturbations is examined, the latter yielding a convergence proof
on non-smooth problems. Numerical results on non-smooth problems
show that the method is effective, and that, in practice, the random
perturbations are more important than randomly orienting the frames.
The method is applicable to nonlinear #; and ¢, data fitting problems,
and other nonsmooth problems.
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1 Introduction

The unconstrained optimization problem is of the form
min f(z) over x€ R", (1)

where a local minimizer is sought. The objective function f maps R" into
RU{+0o0} . For convenience f is given the value 400 at places where it cannot
be evaluated. Allowing f to be infinite means that the method applies to
barrier functions, as well as non-smooth penalty functions. The set €2 denotes
the set of points at which f is finite, and f is assumed to be continuous on 2.

Direct search methods enjoyed a resurgence in popularity over the last
decade or so [9]. This produced many new methods with convergence re-
sults for the case when f is continuously differentiable [14, 8, 11, 3]. Audet
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and Dennis [1] extended this to the case when f is Lipschitz, and strictly
differentiable at each limit point of the sequence of iterates. When strict dif-
ferentiability does not hold at some limit z, Audet and Dennis [1] showed that
the Clarke derivative [4] at x is non-negative in each direction their method
looks in infinitely often as x is approached. Audet and Dennis modify this
method to look asymptotically in every direction [2], in which case the Clarke
derivative is non-negative in all directions at each limit point. However, non-
negativity of the Clarke derivative in all directions does not guarantee the
non-existence of descent directions. A simple example is f = —||z||2, which
has its Clarke derivative at the origin equal to ||v||s for every direction v,
yet every non-zero direction is a descent direction at = 0. In this article
the Clarke derivative approach is replaced by one which directly searches for
descent steps using global optimization techniques.

Section 2 shows that obtaining descent steps in nonsmooth optimization
is closely related to global optimization. Two approaches are looked at in
Sections 3 to 6. The first uses occasional random perturbations, and the
second looks in at least one random direction every iteration. The latter
approach is in the same spirit as the Mesh Adaptive Direct Search algorithm
(or MADS) of Audet and Dennis [2]. Numerical experiments reported in
Section 6 show that combining both approaches is the most effective, with
the random perturbations being the more important of the two. Section 5
shows convergence when random perturbations are used.

Random perturbations are interspersed with short length local searches
using a direct search quasi-Newton method. A direct search quasi-Newton
method is a quasi-Newton method which uses finite differences to approxi-
mate the gradient, with the following proviso. The stepsize h for the finite
differences is chosen in order to get a reasonable rate of convergence, and
may be initially quite large (for example, 1 or more); h is not chosen in order
to obtain accurate gradient estimates. The function evaluations performed
for the finite differences also serve as an underlying direct search algorithm
which guarantees convergence of the method on C*! problems. This proof of
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convergence [11] is independent of the accuracy of the gradient estimates: it
is valid even if the gradient estimates are all set to zero, generated randomly,
or are selected as perniciously as possible.

Such a local search has several advantages. The direct search nature of the
method means it approximately solves certain types of global optimization
problems [17], which is useful here. Moreover, as the local search mimics
a quasi-Newton method, it dramatically improves the rate of convergence
in areas where f is smooth. The length of each local search is kept to a
small number of function evaluations, so that random perturbations are used
regularly.

Algorithm 1 generates a sequence of iterates {x(®}%°, C Q. Each iter-
ate 1) is generated from its predecessor z(¥) by evaluating f at a finite
set of points around z®, which form part of a frame. The orientation of
this finite set of points may be randomly selected, or they may be aligned
with the coordinate directions. A direct search quasi-Newton direction is
generated, and a finite ray search along this direction is performed. Selected
points from this ray search form the remainder of the frame. A second ray
search is then performed along the ray from z*®) passing through the lowest
point in the frame, yielding the next iterate z*+1. This second ray search
is superfluous when the lowest frame point was generated by the first ray
search. This local search process is interrupted regularly, and a number of
random perturbations (and their negatives) of the current best known point
are considered. The local search continues from the perturbed point with the
lowest function value, even if this point is higher than the current iterate.
These random (and sometimes uphill) steps allow convergence to be obtained
even when f is not smooth.
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2 Connections with global optimization

This section shows that finding a descent direction of a non-smooth function
in R" is closely related to a global optimization problem in n — 1 dimensions.
For clarity 2 = R" is assumed. Consider the global optimization problem

min F(¢) over (€ [-1,1]"", (2)

where a point with a function value at most ¢ > 0 more than the global
minimum value F™* is sought. The global optimization problem is unchanged
by the addition of a constant to F', so we subtract F*+e¢ from F', which means
that a point with a negative function value is now wanted. This problem can
be expressed as the problem of finding a direction of descent for a non-smooth
function W(¢,z) in n dimensions. V is defined in terms of an intermediate
function

Moz{F@’ 1¢]lee <1, @)
(lloe = DT + 2 = [I¢lls) F (C/NCN0) 5 1< [IC]lo0 < 2.

The continuous function ¢ extends F to [—2,2]""! in such a way that ¢ = F
on [—1,1]"1. Outside of this region ¢ rises to a positive value T on ||(|| = 2,
where the positive constant T is greater than the mazimum value of F' on
[—1,1)". Using = = (t, 2) where z € R, define

W(t2) = ¢ (2t/2) /275 Nl < 2,
7 22+ [|t)|%, otherwise.

Since U is linear along each ray emanating from the origin, locating a descent
direction for ¥ is equivalent to locating a point (¢, z) at which U is negative,
which implies ¢(2t/2z) < 0. If 2||t]c < z, then F(2t/z) < 0, otherwise
F(t/||t]l) < 0 from the form of (3). In both cases a solution to (2) is
obtained. As an illustration, W(¢, z) is shown in Figure 1 for F' = 16.5 +
20¢ sin(20¢) on ¢ € [-1,1].
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Function Value

FIGURE 1: ¥(t, 2) for the function F' = 16.5 + 20¢ sin(20¢) on ¢ € [—1,1].
The connection between finding a descent direction for W at the origin, and
finding a global minimizer of F' is clear from the front left edge of the graph.
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A simple stochastic global optimization method is Pure Random Search
(PRS), which evaluates the function at a finite number of randomly selected
points in the area of interest and takes the lowest of these as an approxi-
mation to a global minimum. PRS can be applied to the n — 1 dimensional
set of directions emanating from z*) by using randomly oriented frames.
In global optimization literature the multistart method is widely regarded
as an improvement of PRS [15]. Multistart generates points randomly, but
performs a local search from each random seed point. Applying multistart
to f in an n dimensional neighbourhood of z® yields a random perturbation
method. The following example illustrates what the relative merits of these
two approaches might be. Consider finding a descent direction at the origin
for the function

f=max{a’z,b"z}, z€R", (4)

where a and b are distinct unit vectors. We assume that a # —b so that a
descent direction exists. Figure 2 illustrates such a function. Defining the
angle  as shown in Figure 2 via b = cos(m —#) gives the angle of the wedge
of descent directions in the plane containing a and b. The probability of PRS
locating a descent direction by randomly picking a point in any hypersphere
centred on the origin is /27. If § ~ 0, then the probability that PRS will
succeed in a finite number of iterations can be made arbitrarily low.

In contrast, multistart with steepest descent and exact line searches will
succeed in one iteration provided the starting point lies to the left of the
vectors a and b in Figure 2. This includes all points satisfying (a +b)T2 < 0.
Hence multistart has at least a 50% chance of success each iteration from
a seed point randomly chosen from any hypersphere or box centred on the
origin.

Multistart has been developed into more advanced algorithms, such as
Multi-Level Single Linkage [12, 13]. The main idea behind these methods
is to group the random points into clusters, where a local search from any
point in a cluster is expected to find the same local minimum. Hence it is
only necessary to do one local search per cluster. Herein a very crude version
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T

FIGURE 2: Level curves of the nonsmooth function f = max{a’z,b"z},
with a and b unit vectors satisfying a # —b. The wedge of internal an-
gle 6 between the two thick lines gives the cone of descent directions at the
origin O.
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of clustering is used: a number of random points are generated and a local
search is performed from the lowest of these.

3 Frames

A positive spanning set S, is a finite set of vectors with the property that
any vector in R" can be written as a non-negative linear combination of
these vectors. Here non-negative means that the coefficients in the linear
combination are all non-negative. If no proper subset of S, is a positive
spanning set, then Sy is called a positive basis [7]. Positive spanning sets
are used to form frames [5, 16]. A frame ® is constructed around a central
point z called the frame’s centre:

O(z,h,Sy)={x+hv:veS.}.
The positive quantity h is called the frame size. An upper bound
lv|| < K forallve S, (5)

is placed on the members of every S to ensure that the frames shrink to a
point as h — 0. Previously the term frame has only been used when S, is
a positive basis. Herein we make an innocuous change and allow S, to be a
finite positive spanning set.

Each positive spanning set S, consists of the union of a positive basis
and selected points generated by the quasi-Newton ray search. The positive
basis V(f) is of the form {£He,...,+He,} where H is a Householder matrix
and eq,...,e, are the columns of the identity matrix /. Each Householder
matrix is formed using a randomly chosen non-zero vector u € [—1,1]" via
H = I—2uu”/||u||*. These Householder matrices allow the algorithm to look
in a random direction every iteration. A second order estimate g of the
gradient V f(z®) is also formed from these points. If some of these points
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generated using the positive basis Vik) have infinite function values, forward
or backward differences are used to estimate the corresponding element(s)
of g, if possible, otherwise these element(s) are set to zero.

4 The algorithm

The main part of the algorithm is listed in Algorithm 1. This algorithm
calls a local search as a subroutine in step IV. This local search is listed as
Algorithm 2. These algorithms, as listed, use both random perturbations
and randomly oriented frames. Four different versions of the method were
tested, where these variants used either both, one of, or neither of the random
perturbations and randomly oriented frames. Random perturbations are
eliminated by removing step III of the main algorithm (Algorithm 1) and
using *) as the start point of the local search in step IV. Randomly oriented
frames are eliminated by setting H® = I in step 1 of Algorithm 2. This
yields fixed frames of the form {z £ he; : i =1,...,n}.

In Algorithm 1, hyes is half the side-length of the hypercube centred
on z®) in which f is polled randomly. Positive upper and lower limits Hypr
and Hyy, are placed on hye, for convergence purposes. The matrix B *) is a
positive definite approximation to the Hessian of f, if it exists.

At each iteration in Algorithm 2 the BFGS update is applied to B®)
yielding B®+D . If B*+1 is not positive definite, then B*+Y is replaced
with B*®). The bound on al|p|| in step 3 is equivalent to that in (5).

4.1 The ray search

Herein we consider a simple descent forward tracking ray search along the ray
x+ahs with a > 0. An increasing sequence of « values o, a1, g, ..., aj..
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Algorithm 1
I Initialize: Set k = 1. Choose 2" and h™) > 0. Set BM =T .

II Choose hr(dlfe))so S [ler; Hupr] .

III Calculate f at 5n/2 pairs of points  and 22*) — x| where each z is

chosen randomly from z(®) + hgfgso[—l, 1J*. If f is infinite at all of
these points, repeat this step until at least one finite function value is
obtained.

IV Execute the local search with the lowest point found in step III as the
initial point. Set z*) equal to the lowest known point.

V If the stopping conditions are not satisfied, go to step II.

is used, where o, h|s|| > L and L > 0 is the minimum length over which
the ray search must be performed. L is independent of k. Each o, 2 < j <
Jmax » satisfies pra;—1 < o < paayj_y for constants 1 < p; < py independent
of 7 and k. For convenience ay = 0 and a; = 1 are used as these correspond
to the points x and = + hs at which the function values are already known.
The ray search considers j = 1,2, ..., jmax N succession until the inequality
f; < fj—1 is violated or the sequence is exhausted. The predecessor of the
a; value which violated this inequality is chosen as a®). The algorithm may
then choose any point as the next iterate provided it is not higher than
the point found by the forward tracking ray search. Numerical results were
generated with L = oo and p; = py = 2.

4.2 Frame sizes and stopping conditions

Stopping conditions for the main algorithm are based on the number, N,
of unsuccessful local searches since the last successful local search. A local
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Algorithm 2

1.

2.

Form H®),

Calculate f at the points 2 + hFy | for all v € fo) .

. Form the direct search quasi-Newton direction p and conduct a forward

tracking ray search along x+ap. These ap values which satisfy a|p|| <
hK | plus those in V¥ yield S

Choose s*) as the member of S(f) which yields the lowest function
value.

CIf st ¢ V(f) then do a forward tracking ray search along 2 +ah®) s*)

with o > 0, yielding z*+b.

. Adjust h to get h**Y and update the Hessian estimate B.

Increment k. If the local search stopping conditions are not satisfied,
go to step 1, otherwise return to the main algorithm.
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search is successful if it improves the current best known point. The current
function values of the last 15 iterations (listed in vector form as Fy;) are also
used, together with a positive accuracy parameter 7,.. provided by the user.
The quantity

max(Fy5) — min(F5)

1 + ‘ min(F15)|

AF =

is computed. The algorithm halts when Ao < 5Taee and any one of the
following conditions hold: AF < Tue/10; or AF < Toee and Ny > 35 or
AF < 107 and Ny > 7; or Ny > 15. Numerical results were generated
Using Taee = 1077

The local search halts after 10n? function evaluations have been per-
formed; or if f is finite at all points used to estimate the gradient, the gra-
dient estimate ¢ has 2-norm less than T,..(1 + |f]), and h < 57aec. The
maximum number of function evaluations is enough for the quasi-Newton
local search to minimize a quadratic 4 or 5 times (or to do the equivalent of
4 or 5 iterations of Newton’s method, loosely speaking).

In generating the numerical results, hyeso Was restricted to the interval
[Hiwes Hupr] = [0.01 min(Tace, 1), 10]. When hyeso is adjusted, it is increased
by a factor 3/2 if the distance between the initial and final points of the most
recent local search is at least \/nhpeso/2 and AF > 107, . Otherwise it is
decreased according to the following schedule: Ay, is scaled by 1/2, 0.66,
0.8 or 0.9 depending on whether it is at least 10°, 102, 10, or 1 times Hiy,.

A lower limit of Ay, = 10719 was placed on h, simply to keep h well above
machine precision. If the step length in the most recent iteration of the local
search was at most 5h and the reduction in f in that iteration was at most
half the reduction in f in the previous iteration, then h is decreased according
to the same schedule as hyeso, €xcept that hy, replaces Hyy,. Otherwise it
is increased by a factor 5/2 provided the value of « in the most recent ray
search exceeded 2 + 24/n and the last local search step length exceeded 20h.
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5 Convergence

When random perturbations are absent the algorithm is provably conver-
gent on continuously differentiable functions [6], with or without randomly
oriented frames. Convergence is guaranteed by the ray searches through
the best frame point in step 5 of the local search; it is independent of the
quasi-Newton ray search in step 3.

When random perturbations are used the following theorem gives con-
vergence under appropriate conditions. For convenience let B(z,e) = {y :
ly — z]| < €}, and let B(z, €) denote its closure in R".

Theorem 1 Assume the sequence of iterates is bounded, and let ™ be a
cluster point of the sequence of iterates such that

f(z*) = li]?ig}ff (x(k)) :

If there exists an € > 0 such that QﬂB(a;;*, €) 15 equal to the closure of its own
interior, and if f is continuous on QN B(x*,€), then x* is a local minimizer
with probability 1.

Proof: Assume z* is not a local minimizer of f. Then there exists a se-
quence {y;} C Q converging to z* such that f(y;) < f(«*) for all 7. Since
QN B(x*, €) is the closure of its own interior, there is a second sequence {z;}
in the interior of Q such that {z;} converges to z*, and

1
f(z) < 3 [f(yi) + f(x™)] < f(z*) for all i sufficiently large.
Choose i large enough so that ||z; — 2*||ec < Hiw/3 and also choose n €

(0, Hyyy /3] so that f(x) < f(2*) on B(z;,n). Hence for any k such that ||z —
¥l < Hyy:/3 the probability that a random point generated by step 111



6 Numerical results, discussion and conclusion C941

lies in B(z;,7n) is at least (1/Hyup)". Since there is an infinite subsequence
of {®} converging to x* it follows that the probability that z* is not a local
minimizer is 0, as required. [ )

This result is stronger than corresponding results for MADS in two ways.
First, f need only be continuous on €2 near x* rather than locally Lipschitz.
Second, z* is a local minimizer with probability 1, rather than the Clarke
derivative being non-negative at x* in all directions. Convergence is com-
pletely independent of the local search, but the local search can dramatically
improve the rate of convergence, especially in regions where f is continuously
differentiable, or smoother. Deleting the local search changes the method’s
nature from that of multistart to pure random search.

6 Numerical results, discussion and
conclusion

The algorithm was tested on test functions from Moré, Garbow, and Hill-
strom [10]. Each of these functions takes a sum of squares form. Herein they
are modified by re-writing them as a sum of absolute values

flz) = Z | fi(2)] .

Only functions with an optimal function value of zero are considered because
this ensures the sum of squares and sum of absolute values forms share the
same optimal point.

The algorithm was tested in four different configurations: with both ran-
dom perturbations and randomly oriented frames (Table 1); with random
perturbations and fixed frames (Table 2); with no perturbations and ran-
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TABLE 1: Results for the algorithm with both random perturbations and
randomly oriented frames. The number of fails column has been omitted
from this table as no fails occurred.

Problem n m ur fevals median Y |f;| median > f?
Rosenbrock 2 2 4338 be-8 oe-15
Brown badly scaled 2 3 10598 2e-3 3e-6
Beale 2 3 3638 4e-8 oe-16
Helical valley 3 3 8406 Te-8 3e-15
Gulf 39 15583 le-5 3e-12
Extended Powell 4 11074 de-7 le-13
Woods 4 15610 3e-7 3e-14
Trigonometric D 14209 oe-8 9e-16
Variably Dimensioned 8 10 34679 2e-T7 2e-14

TABLE 2: Results with random perturbations using frames aligned with the

coordinate axes.

Problem n m ur fevals median Y f? nr fails
Rosenbrock 2 2 4442 8e-15 -
Brown badly scaled 2 3 9606 8e-6 2
Beale 2 3 3038 3e-16 -
Helical valley 3 3 6595 de-15 -
Gulf 3 99 9159 Te-16 1
Extended Powell 4 4 8381 2e-11 -
Woods 4 6 15451 4e-15 -
Trigonometric 5 5 14367 8e-17 -
Variably Dimensioned 8 10 42545 3e-15 -
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TABLE 3: Results with randomly oriented frames, but without random per-
turbations. Here n/a stands for not applicable.

Problem n m ur fevals median Y f? nr fails
Rosenbrock 2 2 n/a n/a 5
Brown badly scaled 2 3 n/a n/a 5
Beale 2 3 2561 3e-17 -
Helical valley 3 3 9265 2e-16 4
Gulf 3 99 14607 Te-12 2
Extended Powell 4 4 7173 7e-9 -
Woods 4 6 n/a n/a 5
Trigonometric 5 5 10515 Te-T7

Variably Dimensioned 8 10 11665 3e-21 -

TABLE 4: Results with frames aligned with the coordinate axes, and without

random perturbations.

Problem n m nr fevals final > f?
Rosenbrock 2 2 failed 2.1
Brown badly scaled 2 3 642 0
Beale 2 3 2734 9e-14
Helical valley 3 3 8254 9e-14
Gulf 3 99 5928 Te-18
Extended Powell 4 4 4755 3e-12
Woods 4 6 failed 7.9
Trigonometric 5 5 failed 0.002
Variably Dimensioned 8 10 7722 2e-22
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domly oriented frames (Table 3); and with fixed frames without perturba-
tions (Table 4). The first three forms of the algorithm use random elements,
and so five runs were performed for each problem. The fixed frame method
is deterministic, and so only one run per problem is needed. The legend
for Tables 1-4 is as follows: n is the problem dimension; m is the number
of absolute values summed to give f; ‘nr f evals’ is the average number of
function evaluations (including in the local searches) over the runs that were
successful; ‘median Y f7’ is the median value of Y f? over the successful
runs; and similarly for ‘median ) |f;|.’

The algorithm succeeded on all runs with both random perturbations and
randomly oriented frames. The method had 3 fails from 45 runs when random
perturbations were used with fixed frames, whereas using randomly oriented
frames without perturbations yielded 21 failures from 45 runs. Interestingly
without any random elements the method failed on only 3 runs out of 9;
a lower failure rate than with randomly oriented frames. This shows that
frame based local searches have a significant capability to solve nonsmooth
problems.

In order to make a direct comparison with MADS [2], the method was also
used to minimize

f=(1—exp(=|zl]*)) max{|lz — c|*, [l + c]*},

where ¢ = (30,40) and the initial point is z = (—2.1,1.7). This problem
is non-smooth, but is strictly differentiable at the solution x = 0. Various
versions of MADS required between 180 and 300 function evaluations to re-
duce f to 1071, Five runs of the current method used either two or three
iterations of the main algorithm (Algorithm 1) with 105, 106, 122, 194, and
248 function evaluations respectively. This suggests our algorithm is signif-
icantly faster than MADS, and that random perturbations interspersed with
short local searches may be beneficial to MADS [2].

In conclusion, Section 2 shows that nonsmooth local optimization is
closely related to global optimization. A method for nonsmooth optimization
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using a frame based local search with occasional random perturbations has
been developed, proven convergent, and numerically tested. Use of randomly
oriented frames improved the numerical performance of the method, enabling
the algorithm to solve each test problem on every run.
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