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Polyhedral function constrained optimization
problems

M. R. Osborne∗
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Abstract

Recently polyhedral functions have proved distinctly useful in ex-
pressing selection criteria in various model building techniques. Here
they play the role of a constraint on an estimation problem. Whereas
they can always be replaced by an appropriate family of linear con-
straints, the resulting set can be a very large. Compact representations
are available and their use is illustrated by developing both active set
and homotopy algorithms for the general polyhedral constrained prob-
lem. These are illustrated using some well known data sets.
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1 Introduction

The simplest form of polyhedral constrained optimization problem is

min
x∈X

f(x) ; X = {x : κ ≥ g (x)} . (1)

Here f (x) is strictly convex and smooth (typically a quadratic form), and
g (x) is polyhedral convex. The associated Lagrangian form is

L (x, λ) = f(x) + λg (x) . (2)

Note that L is strictly convex for all λ ≥ 0 and hence has an unique minimum.

Remark 1 To relate the Lagrange multiplier for (1) where it can be consid-
ered as a function of κ with the value of λ in (2) where it can be assigned a
priori [1] assume

x̂ = arg min
x

g (x)

is an isolated (global) minimum of g (x) so that κ ≥ g (x̂) is a necessary
condition on (1). The Kuhn–Tucker conditions for (1) are

∃
{
vT ∈ ∂g (x) , µ ≥ 0

}
3 ∇f(x) = −µvT . (3)
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Now, as κ → g (x̂), both the computed solution x∗ → x̂ , and µ (x∗) →
µ (x̂) , while as κ → ∞ , then x∗ → arg minx∈eff(g) f (x) , and µ (x∗) → 0 .
Here eff(g) = {x : g(x <∞}. The interesting result is that if λ ≥ µ (x̂) ,
0 ∈ ∂g (x̂)o (set interior) then x̂ minimizes L (x, λ). The argument uses

vT ∈ ∂g (x̂)⇒ µ

λ
vT ∈ ∂g (x̂) , λ > µ .

Several recent papers have considered optimisation problems having this
form in a modelling context. Here

r = y − Ax

where y is a vector of noisy observations, A : Rp → Rn is the design matrix,
and x is a vector of parameters to be estimated from the observed data.
There is interest in the case p > n in variable selection problems.

1. The ‘lasso’ [6, 4] provides a new approach to variable selection. The
constrained optimization problem is

min
x

1

2
rT r ; ‖x‖1 ≤ κ .

The ‘extended lasso’ seeks a common set of predictor variables from
a class of p possibilities in order to model k species on the basis of
n observations on each species by considering the constrained problem

min
x

n∑
i=1

k∑
j=1

(
rj
i

)2
;

p∑
m=1

max
1≤j≤k

|xj
m| ≤ κ .

This problem is work in progress by Turlach, Venables, and Wright. It
is proving to be amenable to similar techniques to the ‘lasso’.

2. The corresponding Lagrangian form of the lasso is

min
x

{
1

2
rT r+λ ‖x‖1

}
.

It has been considered in ‘basis pursuit denoising’ [1].
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3. A somewhat more complex polyhedral constraint occurs in ‘support
vector regression’ [7]. This problem is

min
x

{
1

2
‖x‖22 + λ

n∑
i=1

|ri|ε

}
,

where

|r|ε =

{
|r| − ε , |r| ≥ ε ,
0, |r| < ε .

These problems exhibit explicit dependence on a parameter (either κ or λ).
This provides a mechanism for developing homotopy methods to completely
describe the solution path, and it is observed that in lasso like problems the
work required is little more than that for a single active set minimization.
This has attracted considerable recent interest [2, 5, 8, e.g.]. However, sup-
port vector regression provides an example which shows that not all problems
of this class can be solved so economically. Thus an active set method proves
to be an important part of a general tool kit.

The advantage in our approach, which concentrates on describing the
local structure of g (x) polyhedral convex [3], is that it avoids the potentially
very large constraint sets that follow from the familiar representation as the
supremum of a finite affine family. Non-smooth points x∗ of the epigraph
are characterized by the vanishing of certain linear functions or “structure
functionals”, characteristic of g, pointed to by an index set σ:

φi (x
∗) = 0 , i ∈ σ .

This characterization typically contains redundant equations and an efficient
set is obtained by considering the tangent cone T which at each non smooth
point inherits the polyhedral structure. Each (plane) face s is characterized
by a particular reduced set written in vector form φs with components φi

pointed to by σs ⊂ σ . The defining properties are that directions t into this
face satisfy

V T
s t = λ > 0 , Vs = (∇φs)T ,
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and that Vs has full column rank. Let x = x∗ + t . Then piecewise linearity
permits the local representation

g (x) = gs (x) +
∑
i∈σs

ws
i (t) φi (x) ,

where gs (x) is smooth, and nonsmoothness is captured in the coefficients
ws

i (t) of the structure functional terms. The subdifferential at x∗ is

v = gs + Vszs , gs = ∇gT
s , zs ∈ Zs = conv {ws (t)} .

Each edges of T is found by dropping a particular component φi from φs.
Each relation has the form[

∇φT
i ∇φT

i

] [
Ss

i 0
ss
i 1

]
= VsPi ,

where the edge condition is∇φit = 0 , and Pi is a permutation matrix. Edges
of T generate the extreme points of the subdifferential constraint set Zs which
has an explicit representation

ζ−i ≤
[

sT
i 1

]
P−1

i z ≤ ζ+
i , i ∈ σs . (4)

The bounds ζ−i and ζ+
i can be computed when the directional derivative

of g (x) is available [3].

2 An active set algorithm

The terminology is intended to indicates that active structure functionals
play a similar role to active constraints in standard optimization problems.
This analogy is extended here by the development of what is essentially an
sqp algorithm for the Lagrangian form of the problem. Let the subdifferential
based on a particular face specification be

vT ∈ ∂g (x0)⇒ v = gg + Vσz , z ∈ Zσ .
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The algorithm generates a descent direction by solving the quadratic program
subproblem

min
V T

σ h=0
G (x0,h) , (5)

where

G (x0,h) =
(
∇f (x0) + λgT

g

)
h +

1

2
hT∇2fh . (6)

The subproblem (5) is compatible with the local active structure provided:

• the given σ points to a basis set of active structure functionals, and

• relative to this structure gg is the gradient of the differentiable part
of g.

Points where this local representation of the problem holds are said to be
lc-feasible.

The solution of (5) generates a descent direction. Let h minimize G. Iff
‖h‖ 6= 0 , then h is a descent direction for minimizing L (x, λ). First note
the result that

h 6= 0⇒ min G < 0⇒
(
∇f (x0) + λgT

g

)
h < 0 .

This is used in the calculation of the directional derivative:

L′ (x : h, λ) = max
vT∈∂L

vTh

= max
z∈Zσ

{
∇f (x0) + λ (gg + Vσz)

T
}

h

=
(
∇f (x0) + λgT

g

)
h < 0 .

The basic steps of the algorithm when h 6= 0 are:

• compute h by minimizing G (x0,h);
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• if x0 + h is an lc-feasible minimum of L (x, λ) then stop;

• else perform a line search on L (x0 + γh, λ).

The line search stops either at a new active structure functional which must
then be added to the active set, or at a point where the directional derivative
vanishes, and both possibilities need to be considered.

The alternative situation corresponds to h = 0 . If this is an lc-feasible
minimum then there exists z0 such that

∇f (x0) + λ (gg + Vσz0)
T = 0 .

If 0 ∈ ∂L (x0, λ) , z0 ∈ Zσ then x0 is optimal. Otherwise it is necessary to:

1. relax an active structure functional associated with a violated con-
straint on Zσ;

2. redefine the local linearization.

To update the structure relations (σ ← σ\ {j}) use

[
Vj vj

] [
S 0
sT
j 1

]
= VσPj ,

gj
g = gg + ζjvj ,

ζj =

{
ζ−j ,

[
sT
j 1

]
P−1

j z0 < ζ−j ,
ζ+
j ,

[
sT
j 1

]
P−1

j z0 > ζ+
j .

The key result is that the revised qp gives a descent direction which is lc-
feasible for the revised active set. Let

hj = arg min
V T

j h=0
Gj (x0,h) .
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Then hj is a descent direction, and is lc-feasible in the sense that

vT
j hj > 0 ,

[
sT
j 1

]
P−1

j z0 > ζ+
j ,

< 0 ,
[

sT
j 1

]
P−1

j z0 < ζ−j ,

where the inequalities indicate the manner in which the deleted structure
functional departs from 0. These results follow from the necessary conditions
defining the new descent direction. In outline:

∇2fhj +∇fT + λ
(
gj

g + Vjz
)

= 0, V T
j hj = 0

⇒ hT
j

(
∇fT + λgj

g

)
= −hT

j ∇2fhj < 0 .

hT
j ∇2fhj + hT

j

(
∇fT + λgg

)
+ λζjh

T
j vj = 0 .

Also

0 = hT
j

(
∇fT + λ (gg + Vσz0)

)
= hT

j

(
∇fT + λgg

)
+ λ

[
sT
j 1

]
P−1

j z0h
T
j vj

⇒ hT
j ∇2fhj + λ

(
ζj −

[
sT
j 1

]
P−1

j z0

)
hT

j vj = 0 .

3 A homotopy approach

This was considered first for the lasso in [4]. Assume x, λ are optimal, that an
index set σ points to the active structure functionals, and that the multiplier
vector zσ ∈ Zo

σ , the interior of the constraint set Zσ. Differentiating the
necessary conditions with respect to λ gives

∇2f
dx

dλ
+ λVσ

dzσ

dλ
= − (g + Vσzσ) ,

V T
σ

dx

dλ
= 0 .
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This system can now be used to obtain a differential equation for zσ:

λ
dzσ

dλ
+ zσ = a ,

a = −
(
V T

σ (∇2f)−1Vσ

)−1
V T

σ (∇2f)−1g .

The corresponding equation for x is

dx

dλ
= −(∇2f)−1 (I − S)g ,

where S is the oblique projection onto the column space of Vσ. The right
hand sides are locally constant so that x and λzσ are piecewise linear and
continuous in λ.

There are two causes for slope discontinuities in the piecewise linear op-
timal trajectory.

1. The multiplier vector zσ(λ) reaches a boundary point of Zσ. This
implies an equality [

sT
j 1

]
P−1

j zσ = ζ±j .

This corresponds to a reduced constraint set defined by Vj and revised
necessary conditions: [

Vj vj

] [
Sj 0
sj 1

]
= VσPj ,

∇fT + λ
{
gσ + ζ±j vj + Vjzj

}
= 0 .

2. A new nonredundant structure functional φj becomes active. Here the
revised necessary conditions give

∇fT + λ

{
gσ − ζ±j vj +

[
Vσ vj

] [
zσ

ζ±j

]}
= 0 .

Updating to take account of these structural changes is carried out in the
same manner as in the active set algorithm.
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Table 1: Active set results: housing data, wheat data
ε λ nits n0 ne nits n0 ne
10 10 121 471 13 32 17 9

1 113 471 10 32 18 8
.1 92 459 10 33 18 6

1 10 144 135 13 31 3 9
1 130 135 13 26 2 8
.1 201 129 12 16 0 6

.1 10 262 16 13 54 1 9
1 179 14 12 34 0 8
.1 183 12 11 18 0 5

4 Examples

We consider both the lasso and support vector regression optimization prob-
lems applied to two well known data sets, the Iowa wheat data (p = 9,
n = 33), and the Boston housing data (p = 13, n = 506). For the lasso,
for both data sets, the homotopy algorithm started at κ = 0 turns out to
be clearly the method of choice. Here it takes exactly p updating steps of
O(np) operations applied to an appropriately organized data set to compute
the solutions for the full range of κ in each case, while just two more steps
are necessary if an intercept term is included in the housing data. This is
essentially the minimum number possible. The cost is strictly comparable
with the work required to solve the least squares problem for the full data
set, and a great deal more information is obtained. It is also very competitive
with the cost of the active set lasso algorithm for a single value of κ especially
when a significant number of the variables are selected. Thus the active set
algorithm is of interest mainly when answering questions for a specific value
of κ.

Support vector regression provides an example in which the residual vec-
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Table 2: Homotopy: Iowa wheat data
ε λ nits n0 ne
1 6.1039 -7 30 0 1

4.1825 -6 60 0 1
6.1329 -6 90 1 4
1.8249 +0 120 2 7
6.9885 +0 128 3 9

5 4.7748 -7 25 4 0
1.5381 -6 50 11 1
2.1717 -2 75 11 1
7.9804 -1 100 11 8
4.1176 +0 112 9 9

10 5.3009 -7 30 10 1
4.1587 -6 60 18 1
5.7636 -2 90 19 3
9.9232 -1 120 18 8
2.0812 +0 128 17 9
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Table 3: Homotopy: Boston housing data
ε λ nits n0 ne
.1 6.2813 -7 800 7 1

1.3640 -4 1600 4 5
1.2205 -2 2400 11 11
1.7506 -1 3200 14 11
1.3873 +2 3504 17 13

1 8.4170 -7 900 63 1
5.6961 -4 1800 81 5
2.5095 -2 2700 106 11
8.5303 +0 3600 134 13
2.6616 +2 3630 137 13

5 3.3052 -7 600 189 1
3.1050 -5 1200 276 3
3.7948 -3 1800 318 9
1.5889 -1 2400 394 11
6.1290 +2 2592 405 13
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tor in the linear model appears in the polyhedral function constraint. This
now contains a number of terms equal to the number of observations so that
it is distinctly more complex than in the lasso. The active set algorithm
proves reasonably effective for both data sets. Results are given in Table 1.
Here nits is the number of iterations, n0 the number of residuals at zero level,
and ne the number satisfying |r| = ε . The homotopy algorithm is relatively
less favoured for support vector regression. The obvious starting point for
both data sets is x = 0 , λ = 0 in the sense that the solution is known.
Tables 2 and 3 show a slow beginning with repeated changes in the active set
and little evident structure until λ is increased away from 0 significantly. In
the homotopy algorithm applied to the housing data in particular something
needs to be done to escape the small values of λ (see Table 3). The active set
algorithm could be useful in probing the range of λ to find suitable starting
points for the homotopy here.
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