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Role of particle rotations and rolling resistance
in a semi-infinite particulate solid indented by

a rigid flat punch
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Abstract

Particle rotations, and in particular, rolling resistance are known
to have a dominant influence on the macroscopic behaviour of par-
ticulate materials. We examine the influence of these factors in the
constitutive response of a semi-infinite material to indentation by a
rigid flat punch on the material boundary. Extensive particle rotations
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are found to occur near the edges of the punch where stress concentra-
tions exist, and from where plastic strains which localise into so-called
shear bands emanate. The effects of rolling resistance are found to
have a significant influence on the load-deflection characteristics of
the punch.
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1 Introduction

Determining the stresses and deformation of a semi-infinite material induced
by the indentation of a rigid flat punch on the material’s surface is a well-
known fundamental problem in the theories of elasticity and plasticity [6, 7].
It is encountered in a broad range of engineering problems within soil me-
chanics, geophysics, industrial forming processes, biomechanics, and off-road
vehicle operations, just to name a few [9, 3, 10, 17]. Yet for many everyday
materials (for example, geomaterials, powders, composites etc.), this problem
poses complexities that are not completely understood in either elasticity or
plasticity. For example, in the theory of elasticity a stress singularity occurs
at the punch edge. Such a singularity cannot exist in reality: no physical
body has a perfect square corner (there is always some degree of roundedness)
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and, moreover, real materials will yield at finite stress. However, although
such a singularity is not a feature of real materials, it is known that an abrupt
change in the contact topology occurring at the punch corner leads to regions
of relatively high stress concentrations which may, in turn, initiate localised
plastic deformations (that is, shear bands).

We revisit the flat punch problem for a specific class of materials known
as particulate solids or granular materials. Like many other heterogeneous
materials, the rich and complex behaviour of particulate solids ultimately
arises from internal mechanisms acting on many length scales. For example,
it is now widely accepted that particle rotations govern the macroscopic re-
sponse of particulate solids to external loads. Using non-invasive experimen-
tal techniques, Oda and co-workers uncovered the role of particle rotations
in shear band development in bi-axial compression tests [12]. In particular,
their studies revealed that large particle rotations are concentrated inside
the shear band, with relatively little or no rotations occurring outside the
band. Thus a relatively high rotation gradient is generated along the bound-
aries of the band, a feature which has important implications in continuum
micromechanical modelling [8, 11]. In another set of experiments, Oda et
al. [13] also showed that the dominant deformation mechanism at the mi-
crostructural level, which leads to extensive dilatancy in particulate solids,
is inter-particle rolling and not inter-particle sliding as previously believed.
This finding later motivated studies using discrete element simulations to
determine the influence of rolling resistance in shear band development in bi-
axial compression tests. The results clearly showed that incorporating rolling
resistance in discrete element simulations led to significant improvements in
their predictive capabilities. Thus our specific objective is to investigate, via
discrete element analysis, the role of particle rotations and rolling resistance
in the response of a particulate material to indentation by a flat punch. Of
specific interest is the extent to which particle rotation and rolling resistance
alter both the microscopic and macroscopic response of the material to the
indenting punch. We focus on two key aspects: from a microscopic level, we
determine the extent of particle rotations in the region close to the punch
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face, and from a macroscopic level, we determine whether rolling resistance
has any influence on the load-deflection characteristics of the punch.

The results presented here would be a useful guide for future developments
in micromechanical continuum theory. Indeed, in recent years, micromechan-
ical models associated with Cosserat (micropolar) continuum have provided
a closer association with the actual media by introducing a characteristic size
and enriching the continuum description with rotational degrees of freedom
as well as rolling resistance [5, 15, 16, 18, 20]. This study can therefore as-
sist in determining the suitability of these micromechanically-based Cosserat
models in capturing the essence of particulate behaviour. The use of discrete
element simulations as a virtual laboratory is particularly appropriate for the
type of models developed by Tordesillas and co-workers as these models rely
on the same input parameters as the dem simulations, thereby allowing a
direct comparison to be made between the discrete and continuum models.

2 Discrete element model

The discrete element method (dem) [2] treats particles as distinct interacting
bodies. Interactions between particles are described by contact laws that
define forces and moments created by relative motions of the particles. The
motion of each particle that results from the net forces and moments is
obtained by integrating Newton’s laws. Thus, the particles are not treated
as a medium, rather, the medium behaviour emerges from the interactions
of the particles comprising the assemblage [1].

The evolution of particle velocity vi and rotational rate ωi are given by

m
∂vi

∂t
= mgi +

Nc∑
c=1

f c
i (1)



2 Discrete element model C264

and

Imρ
∂ωi

∂t
=

Nc∑
c=1

eijkf
c
i r

c
j +

Nc∑
c=1

mc
i , (2)

where m, Im and ρ are the particle mass, moment of inertia and density re-
spectively; gi is the acceleration of gravity; f c

i and mc
i the forces and moments

applied at the contacts; rc
j is the radius vector linking the particle centre to

the contact; Nc is the number of contacts for the particle; and eijk is the
usual permutation symbol.

Two particles with radii RA and RB make contact when the distance d
separating the particles satisfies:

d < RA + RB . (3)

The contact forces and moments arise from relative motion between con-
tacting particles. The motion of each individual particle is described by the
velocity of the particle centre u̇i (or vi) and the rotation about the centre.
The branch vector between particle centres, xA

i −xB
i , is also the difference be-

tween the respective radii vectors that link the particle centres to the contact
rA
i − rB

i . With this nomenclature, the relative motion at contact c between
particles A and B is

∆̇c
i = u̇A

i − u̇B
i + eijk(r

A
j ωA

k − rB
j ωB

k ) . (4)

The contact moments are generated by the difference in rotations between
the particles:

∆ωc
i = ∆t(ωA

i − ωB
i ) . (5)

The contact forces are given by the contact laws in terms of their normal
and shear components,

fn =

{
Kn∆n ,
ErK

n(∆o −∆n) , ∆n < ∆o ;
(6)
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f s
i =

{
Ks∆s

i ,
fn tan φ ns

i , |f s
i | ≥ fn tan φ ;

(7)

and the contact moment

mc
i =

{
Km∆ωc

i ,
fn tan φm nm

i , |mc
i | ≥ fn tan φm ;

(8)

where Kn, Ks and Km are stiffness constants; Er is a factor to dissipate
energy through stiffening the unload response; ∆n and ∆s

i are the normal and
shear components of the contact displacement; ns

i and nm
i are unit vectors

in the direction of the shear force and moment; ∆o is the greatest value of
penetration in the history of ∆n; and φ and φm are friction parameters. Thus
note that there are two parameters (Km and φm) associated with the overall
resistance to rolling at each contact.

3 Results and discussion

The discrete element model described in Section 2 is used to model the
response of a 2D assembly of 7503 circular disks under deformation by a
rigid flat punch. The disk radii ranged from 0.0333 inches to 0.05 inches,
with an average radius of 0.0417 inches. The initial setup is established
by dropping the particles into the box, and allowing them to settle until
individual rotations/displacements became negligible. In all simulations, the
punch moved down with a velocity of 0.5 inches/second for 1 second. The
parameters used in the simulations are summarised in Table 1. Note that
where more than one value has been used, these are listed separated by
commas.

In all cases, the resulting flow pattern is not symmetric due to the random
packing of the material. Figure 1 shows particle rotation rates at an inden-
tation of 0.05 in for the cases with and without rolling resistance. Clearly,
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Table 1: Parameters used in the simulations
dem parameters and material properties Value
Duration 1 s
Timestep increment 1.843× 10−5 s
Punch velocity 0.5 in/s
Box size 10 in× 5 in
Punch width 1, 0.4 in
Number of particles 7503

Particle density 0.2476 lb/in3

Smallest radius 3.33× 10−2 in
Largest radius 5.0× 10−2 in
Average radius 4.170× 10−2 in
Inter-particle friction coefficient (tan φ) 0.1
Particle-wall friction coefficient (tan φ = f) 0.0, 0.36
Rolling friction coefficient (tan φm) 0.1, 0.5

Gravity value 386.4 in/s2

Energy dissipation (Er) 10
Normal stiffness constant (Kn) 3000 lbf/in
Tangential stiffness constant (Ks) 3000 lbf/in
Rotational stiffness constant (Km) 0, 50, 300, 1000 lbf/rad
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Figure 1: Particle rotation rate at 0.05 in indentation (f = 0 , punch
width = 1 in, tan φm = 0.1): (a) Km = 0 lbf/rad, (b) Km = 50 lbf/rad.
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Figure 2: Particle rotation at 0.25 in indentation (f = 0 , punch width =
1 in, Km = 300 lbf/rad, tan φm = 0.1). Download the movie.

without any rolling resistance (a) the rotations are large and unrealistic. In-
troducing rolling resistance (b) into the simulation certainly improves the
resulting rotations underneath the punch. In Figure 2, we show particle
rotations at an indentation of 0.25 in [14].

Note that the rotation pattern shown in Figure 2 is consistent with the ro-
tations derived from a finite element simulation based on a recently developed
micropolar model using the same parameters and level of indentation [19],
as shown in Figure 3—note that only half of the domain is shown due to
symmetry. Also note that a finer mesh (that is, darker region) is used for
the region directly underneath the punch.

http://anziamj.austms.org.au/V46/CTAC2004/Tord/rotation.mov
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Figure 3: fem rotations for half-space at 0.25 in indentation (f = 0 , punch
width = 0.5 in, Km = 300 lbf/rad, Ks = 3000 lbf/in, Kn = 3000 lbf/in).
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Table 2: Key for Figure 4.
Name f Punch width (in) Km (lbf/rad) tan φm

Km=0 0 1 0 0.1
Km=50 0 1 50 0.1
Km=300 0 1 300 0.1
Km=1000 0 1 1000 0.1
Frictional 0.36 1 50 0.1
Small 0 0.4 50 0.1
Mtan=0.5 0 1 50 0.5

In general, we see that large rotations are generated near the punch cor-
ners where high stress concentrations exist. These rotations, in turn, lead
to dilatation in the regions adjacent to the sides of the punch. Directly be-
low the punch (recall Figure 2) we see a region (near triangular in shape) in
which there are no rotations. This is in keeping with the well-known and ex-
perimentally observed “quasi-solid” region beneath the punch, which moves
with the punch in rigid body motion.

Throughout deformation, rotations are a dominant deformation mecha-
nism at the microstructural (particle) level.

Figure 4 shows the total force on the punch (that is, the load) for dis-
placements of up to 0.475 in with the specific parameters used given in Ta-
ble 2. Varying the rolling resistance produced marked differences in the
load-displacement characteristics.

With all other parameters kept the same, we find that the total indenta-
tion load required to reach the same displacement increased slightly as the av-
erage radius decreased (or the punch width increased). This inverse relation-
ship, albeit weak, is consistent with the micropolar model for 3-dimensional
polydisperse granular media developed by Gardiner and Tordesillas [4]. Simi-
larly, changing the coefficient of friction at the contact interface while keeping
all other parameters constant only leads to very small changes in the total
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Figure 4: Load-displacement graph for punch
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load required to indent the material to the same depth. The same applies for
the coefficient of rolling friction, which indicates that the rotational stiffness
constant, equation (8), is the dominant contributor to rolling resistance.

4 Conclusions

It is widely agreed that particle rotations do play a key role in deformation of
granular assemblies, and we have shown this for the rigid flat punch problem.
However, simply incorporating particle rotations is not enough—resistance
to particle rolling must also be included due to its significant influence on the
constitutive response of the material at both the microscopic and macroscopic
level.

We also examined the influence of other factors, such as the average radius
of particles and the coefficient of friction at the contact interface between the
punch and the particulate material. Our findings indicate that these factors
have only a minor influence on the constitutive response of the material
to the punch, when compared with rotations and rolling resistance. These
suggest that models of granular materials need to incorporate at least particle
rotations and rolling resistance, before they can provide a reasonably accurate
representation of real particulate behaviour.
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