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A method for extracting coupled patterns of
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climate variables
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Abstract

Interannual variability in the seasonal mean of a climate vari-
able can arise from a number of sources which can be categorized
as (a) slowly varying (interannual/supra-annual) external forcing (for
example, sea surface temperature forcing) and internal dynamics and
(b) internal dynamics within the season. The former is generally
assumed to be potentially predictable and the latter unpredictable.
Here, a method is proposed for extracting coupled patterns of interan-
nual variability that relate the predictable and unpredictable compo-
nents in pairs of climate variables. The method is applied to observed
Australian summer surface air temperature and the global 500 hPa
geopotential height for the period 1951–1999.
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1 Introduction

The development of seasonal climate forecast schemes, whether statistical
or dynamical, is predicated on an understanding of the sources of predictive
skill as well as the sources of uncertainty in the variability of relevant climate
variables. The seasonal mean of many climate variables can be thought of as
consisting of two components [4, 6, 1, 7, 2, 3]; one is related to slowly varying
boundary, or external, forcing on the climate system (for example, sea surface
temperatures, sea-ice coverage and greenhouse gas concentration) and from
slowly varying (interannual to supra-annual) internal atmospheric variability;
the other is related to intraseasonal (month to month) variability. For the
purposes of long-range (in advance of three months) forecasting, the former is
generally considered as being potentially predictable, in that the forcing are
themselves potentially predictable. The latter is related to meteorological
phenomena that vary significantly within the season (for example, storms
and atmospheric blocking, or intraseasonal variability associated with the
Madden–Julian Oscillation) and is essentially unpredictable, or chaotic.
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Important climate variables (the predictands), such as seasonal mean
temperatures and seasonal mean rainfall, are largely related to local or hemi-
spheric seasonal mean pressure fields (that is, the atmospheric circulation).
Hence, a knowledge of the spatial patterns that relate the potentially pre-
dictable component of the seasonal mean pressure fields to that of the predic-
tand should help us to understand the meteorological phenomena associated
with forecast skill. Conversely, the identification of the spatial patterns that
relate the intraseasonal component of the pressure field to that of the pre-
dictand should help us to understand the meteorological phenomena mainly
responsible for the uncertainty in forecast skill, at the long range.

We propose a method for estimating the interannual cross-covariance ma-
trices associated with the long range (in advance of a season) predictable and
unpredictable components of a pair of climate variables. The method uses
monthly mean time series of the climate variables. From the predictable
and unpredictable cross-covariance matrices it is possible to construct cou-
pled patterns of the predictable and chaotic components of covariability of
the pair of climate variables. The method is applied to observed Australian
summer (December–February, djf) surface air temperature and the 500 hPa
geopotential height, which is often used to characterize the global circulation.

2 Methodology

Let tym(r) and hym(s) represent monthly anomalies of two climate variables
(for example, Australian surface air temperature and global 500 hPa geopo-
tential height), in year y (= 1, . . . , Y ), month m (= 1, 2, 3) and at some
location r = 1, . . . , R and s = 1, . . . , S , not necessarily the same. Then,
following [7], we assume

tym(r) = t̄y(r) + t̃ym(r) , (1)

hym(s) = h̄y(s) + h̃ym(s) , (2)
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where t̄y(r) and h̄y(s) represent predictable components, which we refer to
as the slow components, and t̃ym(r) and h̃ym(s) the intraseasonal component
of each variable. The vectors tT (r) = (t̃y1(r), t̃y2(r), t̃y3(r)) and hT (s) =
(h̃y1(s), h̃y2(s), h̃y3(s)) are assumed to comprise stationary and independent
annual random vectors. The linear regression form (Eqns. (1) or (2)) implies
that month-to-month fluctuations, or intraseasonal variability, arise entirely
from this component (for example, ty1(r) − ty2(r) = t̃y1(r) − t̃y2(r)). We
use the convention that an average over any index will be represented by a
circle. Thus, for example, tyo(r) is an average over m months, and too(r) is an
average over m months and Y years. The symbol V denotes the covariance
of two variables.

Hence, the seasonal means of variables t and h is

tyo(r) = t̄y(r) + t̃yo(r) , (3)

hyo(s) = h̄y(s) + h̃yo(s) , (4)

where t̃yo(r) and h̃yo(s) are associated with intraseasonal variability, and
t̄y(r) and h̄y(s) with the interannual variability of external forcing and slowly
varying (interannual/supra-annual) internal dynamics.

An estimate of the covariance V (t̃yo(r), h̃yo(s)) using monthly means is
made with the following assumptions. Since the daily time series of a climate
variable, within a season, is in general assumed to be stationary, so are the
monthly statistics. In particular, it follows that

V (t̃y1(r), h̃y1(s)) = V (t̃y2(r), h̃y2(s)) = V (t̃y3(r), h̃y3(s)) . (5)

The same is assumed to be true for the inter-monthly covariance, that is,

V (t̃y1(r), h̃y2(s)) = V (t̃y2(r), h̃y3(s)) . (6)

Finally, because daily weather events are unpredictable beyond a week or
two, we assume that the intraseasonal components are uncorrelated if they
are a month or more apart. That is,

V (t̃y1(r), h̃y3(s)) = 0 . (7)
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Assumptions Eqns. (5–7) imply that,

E
(
t(r)hT (s)

)
+ E

(
h(s)tT (r)

)
= 2α

 1 β 0
β 1 β
0 β 1

 , (8)

where E denotes the expectation value based on all years and

α = V (t̃ym(r), h̃ym(s)) , m = 1, 2, 3 , (9)

and

β =
1

2α
[V (t̃y1(r), h̃y2(s)) + V (h̃y1(s), t̃y2(r))]

=
1

2α
[V (t̃y2(r), h̃y3(s)) + V (h̃y2(s), t̃y3(r))] . (10)

In addition, using Eqns. (9–10),

E

{(
t̃y1(r)− t̃y2(r)
t̃y2(r)− t̃y3(r)

) (
h̃y1(s)− h̃y2(s)

h̃y2(s)− h̃y3(s)

)T
}

+ E

{(
h̃y1(s)− h̃y2(s)

h̃y2(s)− h̃y3(s)

) (
t̃y1(r)− t̃y2(r)
t̃y2(r)− t̃y3(r)

)T
}

= 2α

(
2− 2β 2β − 1
2β − 1 2− 2β

)
. (11)

Since, from Eqn. (1), ty1(r) − ty2(r) = t̃y1(r) − t̃y2(r) and ty2(r) − ty3(r) =
t̃y2(r)−t̃y3(r)), with a similar relationship for h, the left hand side of Eqn. (11)
can be evaluated using the given data tym(r) and hym(s). It follows then that

α = a + b and β =
a + 2b

2 (a + b)
, (12)

where

a =
1

2

{
1

Y

Y∑
y=1

[ty1(r)− ty2(r)] [hy1(s)− hy2(s)]
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+
1

Y

Y∑
y=1

[ty2(r)− ty3(r)] [hy2(s)− hy3(s)]

}
, (13)

b =
1

2

{
1

Y

Y∑
y=1

[ty1(r)− ty2(r)] [hy2(s)− hy3(s)]

+
1

Y

Y∑
y=1

[ty2(r)− ty3(r)] [hy1(s)− hy2(s)]

}
. (14)

Using these estimates for α and β in Eqn. (8),

1

2
[V (t̃y1(r), h̃y2(s)) + V (h̃y1(s), t̃y2(r))]

=
1

2
[V (t̃y2(r), h̃y3(s) + V (h̃y2(s), t̃y3(r))]

= αβ . (15)

From Eqn. (7), it follows further that

V (t̃yo(r), h̃yo(s)) =
1

2
[V (t̃yo(r), h̃yo(s)) + V (h̃yo(s), t̃yo(r))]

=
1

18

3∑
m,n=1

[V (t̃ym(r), h̃yn(s)) + V (h̃ym(s), t̃yn(r))]

=
α(3 + 4β)

9
. (16)

Following [7], we constrain β to lie within the interval [0, 0.1] in order to
reduce the estimation error. The covariance V (tyo(r), hyo(s)), which we shall
refer to as the total covariance matrix, is estimated by the sample covariance,

V (tyo(r), hyo(s)) =
1

Y − 1

Y∑
y=1

[tyo(r)− too(r)] [hyo(s)− hoo(s)] . (17)
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Thus, using Eqns (16) and (17), we define the residual covariance

V (tyo(r), hyo(s))− V (t̃yo(r), h̃yo(s)

= V (t̄y(r), h̄y(s)) + V (t̄y(r), h̃yo(s)) + V (h̄y(s), t̃yo(r)) . (18)

In the case where the intraseasonal and slow components are independent,
the residual covariance reduces to the covariance of the slow components only.
Even when this is not the case, the coupled patterns associated with the resid-
ual covariance matrix can be shown to be more potentially predictable than
those from the total covariance matrix, because the weather noise component
has been largely removed. Eqns. (16–18) constructs the corresponding cross-
covariance matrices from which the coupled spatial patterns are derived using
a standard singular value decomposition (svd) analysis [5, e.g.]. Associated
with these patterns, one can derive time series showing how the sign of the
patterns varies year by year. These time series are derived by projecting the
original monthly data in each year onto each pattern [2, e.g.].

3 Example

Here, we apply our method to a study of Australian summer surface air tem-
perature variability and its relationship to the global atmospheric circulation.
The temperature data is taken from the Australian Bureau of Meteorology
high quality surface temperature dataset interpolated onto a 2.5◦× 2.5◦ lati-
tude/longitude grid. For the 500 hPa geopotential height we use the National
Centers for Environmental Prediction (ncep) and National Center for At-
mospheric Research (ncar) re-analysis data. This field effectively gives the
height of the 500 hPa pressure level and is often used to study spatial patterns,
or teleconnections, of interannual variability in the atmospheric circulation.
The data is global and on a 5◦× 5◦ latitude/longitude grid. We consider the
period 1951–1999.
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Figure 1: The first three dominant djf coupled patterns of the intraseasonal
components of Australian surface air temperature and global geopotential
height covariability.
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Figure 1 shows the first three dominant intraseasonal coupled patterns.
They explain 24%, 16% and 10%, respectively, of the covariability in these
fields. The first pattern (Figure 1(a)) depicts surface temperature variability
over southern Australia associated with, at the particular phase shown, a
dipole structure in the geopotential height field with positive (red shading)
and negative (blue shading) height anomalies. The associated atmospheric
winds go approximately anti-clockwise (clockwise) around the positive (nega-
tive) centre. Thus, at this phase, positive temperature anomalies are related
to anticyclonic flow over southern Australia and cyclonic flow in the Aus-
tralian Bight. This is a typical synoptic situation related to atmospheric
blocking associated with intraseasonal internal dynamics.

The second pattern (Figure 1(b)), shows opposite temperature anoma-
lies over northern and southern Australia associated with a meridional wave
train of height anomalies extending from over northern Australia southward
and then eastward into the Pacific Ocean. Again, at the phase shown, the
negative (positive) temperature anomalies are consistent with the presence of
cyclonic (anticyclonic) flow. Finally, pattern three (Figure 1(c)) is associated
with a geopotential height wave train emanating from the northwest of Aus-
tralia. These patterns represent the essentially unpredictable components of
surface temperature and atmospheric height variability.

The two most important slow coupled patterns are shown in Figure 2.
They explain 41% and 12%, respectively, of the covariability in the slow
components. The variability is dominated by the first pattern (Figure 2(a)).
In contrast to the intraseasonal patterns, where the geopotential height pat-
terns show anomalies that are more localised in the Australian region, the
slow geopotential height patterns have more global characteristics, usually
indicative of some large scale forcing or slow internal dynamics. The most
important forcing is generally sea surface temperature (sst). For the first
pattern, positive temperature anomalies over central eastern Australia are
related to positive geopotential height anomalies in a global band between
30◦S to 30◦N. There is also evidence of a Northern Hemisphere wave train (or
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Figure 2: As in Figure 1, but for the first two slow components of coupled
variability.
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Figure 3: The correlation between observed sea surface temperature and
the slow components of Australian surface temperature variability.

teleconnection). This atmospheric pattern is known to be associated with the
El Nino–Southern Oscillation (enso) and sea surface temperature forcing in
the tropical Pacific Ocean.

To illustrate this, we include correlations between the time series of our
temperature patterns and corresponding time series of djf ssts. Here, we
use the UK Meteorological Office Hadley Centre sst dataset. Figure 3(a)
shows this correlation with this temperature pattern. There are clearly large
correlations between eastern Australian temperature and sst anomalies in
the tropical eastern Pacific. In particular, positive (negative) Australian
temperature anomalies are associated with positive (negative) sst anomalies
in the eastern Pacific.

The second coupled pattern (Figure 2(b)) shows positive temperature
anomalies over the northwest and negative anomalies over the southeast of
Australia, associated predominantly with geopotential height anomalies, of
opposite sign, in the middle and high latitudes of the Southern Hemisphere.
This height pattern has features of the Southern Annular Mode (sam), an
important teleconnection generally associated with slow internal dynamics.
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Figure 3(b) shows that there is little large scale sst forcing of this coupled
pattern.

4 Conclusions

We have proposed and examined a technique for extracting slow and in-
traseasonal coupled patterns of interannual variability from meteorological
seasonal mean fields. The dominant intraseasonal patterns show consistent
relationships between the temperature anomalies and geopotential height
anomalies with positive (negative) temperature anomalies associated with
anti-cyclonic (cyclonic) circulation. The intraseasonal height patterns are
fairly localised, with largest weighting in the Australia region, and display
features of Southern Hemisphere blocking and meridional wave trains, typi-
cally associated with internal dynamics at the intraseasonal time scale. The
two most important slow patterns are related to enso and sam, which are
global scale atmospheric teleconnections. sst forcing plays an important role
in the former, and slow internal dynamics in the latter.

A Singular value decomposition

Here we provide a brief summary of the svd analysis technique used to
produce coupled spatial patterns of covariation from a given cross-covariance
matrix. The interested reader is referred to [5] for more details.

Let Xm×t and Yn×t be data matrices representing data from two climate
variables at m and n geographical locations, respectively, and over t years.
Assume further that the columns of the data matrices consists of deviations
from the corresponding vector of sample means over all years. Without loss
of generality, assume also that m ≤ n . Then the cross-covariance matrix can
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be written as

Am×n =
1

t
Xm×tY

T
n×t , (19)

where YT
n×t represents the transpose of Yn×t. Any rectangular matrix can

be given a singular value decomposition [5]

Am×n = Um×nDn×nV
T
n×n , (20)

where the columns of U and V are orthonormal vectors of dimension m and n
and are called left and right singular vectors, respectively. Matrix D is a di-
agonal matrix with non-negative elements dii = di for i = 1, . . . , n , called
singular values. Furthermore, the column vectors of U and V are the eigen-
vectors of the AAT and ATA, respectively, with eigenvalues equal to the
square of the singular values. For example,

AATU = UD(VTV)DT (UTU) = UD2 . (21)

The pairs of singular vectors from U and V, corresponding to the same
singular value, are the coupled patterns we consider above.
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