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Using computational fluid dynamics to study
the effect of contact angle on microdroplet

deformation
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Abstract

Computational fluid dynamics (cfd) is used to study the effect of
contact angle on droplet shape as it moves through a contraction. A
new non-dimensional number is proposed in order to predict situa-
tions where the deformed droplet will form a slug in the contraction
and thus interact with the channel wall. We argue that droplet flow
into a contraction is a useful method to ensure that a droplet will
wet a channel surface without a trapped lubrication film. We demon-
strate that when a droplet is larger than a contraction, capillary and
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Reynolds numbers, and fluid properties may not be sufficient to fully
describe the droplet dynamics through a contraction. We show that
with everything else constant droplet shape and breakup can be con-
trolled simply by changing the wetting properties of the channel wall.
cfd simulations with contact angles ranging from 30◦ to 150◦ shows
that lower contact angles can induce droplet breakup while higher
contact angles form contact-angle dependent shape slugs.

Contents

1 Introduction C305

2 Numerical simulations C307
2.1 Grid dependency and validation . . . . . . . . . . . . . . . C309

3 Results C310
3.1 Slug flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . C310
3.2 Contact angle effects . . . . . . . . . . . . . . . . . . . . . C313

4 Conclusions C317

References C317

1 Introduction

The controlled deformation and breakup of droplets is important in a wide
variety of systems including texture control processes for the food industry,
or understanding cell flow through biological capillaries. Since the defining
drop deformation work of Taylor in 1934 [17], there has been a considerable
body of literature dealing with drop deformation in pure shear [7, e.g.] and
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Figure 1: Schematic of contraction geometry.

planar extensional flows [8, e.g.]. There are fewer studies that deal with both
simultaneously, which occurs in flow through a constriction [18, e.g.].

Extensional flows have been shown to be more energy efficient than shear
flows in deforming drops [6] and unlike shear flows can deform and break up
drops with any viscosity ratio. In simple shear flow a drop with a viscosity
ratio λ (the ratio of discrete phase viscosity to continuous phase viscosity),
of 3.4 or more will not break up [8]. Flow through a contraction involves
extensional fields in the contraction entry and exit regions, and shear only
everywhere else. For the droplet deformation applications mentioned previ-
ously, useful droplet sizes will generally be less than approximately 200µm.
In order to manipulate and study droplets on this scale, microfluidic chan-
nels are extremely useful as they allow minimum quantities of the continuous
phase, and the luxury of devising a channel layout with drop production and
deformation components in a single channel system on a chip (a microfab-
ricated capillary network for example). In microfluidics, velocities tend to
be considerably lower than on macroscale systems meaning that interfacial
tension forces often dominate over shear and inertial forces. The capillary
number, the ratio of the viscous to interfacial tension forces, and the Reynolds
number, the ratio of inertial to viscous forces, are (see Figure 1)

Ca =
µcv1

σ
and Red1 =

ρcv1d1

µc

, (1)

where µc is the continuous phase viscosity, v1 is mean upstream velocity,
σ is the interfacial tension, ρc is the continuous phase density, and d1 is the
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upstream channel diameter. In most applications droplet viscosities will be
considerably larger than the continuous phase viscosity so the best way to
deform and break droplets is in extensional flow, which is easily achieved by
varying the microchannel dimension to form a constriction or a contraction
as shown in Figure 1.

Recently it has been shown that two-phase flow patterns in microchannels
depend on wetting properties of the fluids relative to the channel walls [5].
This is not surprising given the high surface to volume ratios found in mi-
crochannels, which allow surface properties to affect the bulk flow. Here we
propose the use of hydrodynamic forces and surface forces to deform and
possibly break droplets in microchannels. To that end we use computational
fluid dynamics (cfd) with the volume of fluid method (vof) to simulate the
effect that the surface free energy, or its macroscale manifest, the contact
angle, has on the way a droplet is deformed as it passes through a micro-
contraction. Important issues that are addressed are: the determination of
conditions that allow surface interaction through the contraction; and the
presence of a thin lubricating film shielding the droplet or slug from surface
effects.

2 Numerical simulations

In order to predict the dynamics of two immiscible fluids, including surface
tension and contact angle effects, we use the volume of fluid (vof) code
contained in commercial package cfd-ace [http:www.cfdrc.com], which is
based on the vof method first proposed by Hirt and Nichols in 1981 [10],
and recently extended by Rider et al. [16]. The vof method involves tracking
the volume fraction of each fluid in the computational cells via solving the
transport equation for the volume fraction of one species, F :

∂F

∂t
+∇ · (Fv) = 0 . (2)

http:www.cfdrc.com


2 Numerical simulations C308

An upwind scheme with the Piecewise Linear Interface Construction (plic)
method [13] calculates the interface shape from the values of F in each cell.
In this scheme each cell has a unique surface normal that is used to compute
the surface curvature from cell to cell. Interfacial tension is included as a
source term in the momentum equation.

The contact angle is implemented in the code not as a boundary condition,
but within the surface tension model in the solver. The fluid contact angle
at the wall is used to rotate the surface normal in the cells adjacent to the
wall and thus to adjust the curvature and interface shape near the wall. This
method was first described by Brackbill et al. in 1992 [3] and is implemented
using n̂ = n̂wall cos θ + n̂t sin θ , where n̂ is the unit surface normal, and
n̂wall and n̂t are the unit vectors normal and tangential to the wall. The
rotated surface normal is then used to adjust the curvature of the surface, κ,
near the wall using κ = ∇ · n .

This is a macroscopic forcing of the effects due to nanoscale interactions
between the two fluids and the surface, yet it generally mimics observed
phenomena and has been used successfully for some time [14, and references
therein]. We use a static contact angle—dynamic contact angles are not
taken into account.

No-slip boundary conditions at the walls are imposed. However, this
does not mean that the contact line with the wall cannot move, as the code
integrates over the whole cell adjacent to the wall to compute the mass flux
of the second phase, which, when using a finite grid size, will average out
to give an apparent finite interface velocity at the wall. The numerically
induced slip is also described by Renardy et al. [15] who showed that the
contact line motion is not very sensitive (< 5%) to the addition of artificial
slip lengths with magnitudes in the order of the grid size. All droplet shapes
are shown as contours of F = 0.5 .
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Figure 2: Grid dependence of drop deformation through a 4:1 contraction,
Ca = 5 × 10−3 , Red1 = 10 and contact angle 90◦, (i) for a 2d geometry
at 3 different times and (ii) an axisymmetric geometry. a) 4 cells across
contraction radius, b) 8 cells, c) 16 cells d) 32 cells.

2.1 Grid dependency and validation

It is not expected that a vof code will be truly grid independent when
simulating moving contact lines along a surface as the grid size near the
wall will affect how the contact line moves [15]. In fact, the actual physics
of moving contact lines itself is not well resolved [1], and other simulation
methods generally need to use some kind of arbitrary slip or precursor films
even for full wetting systems [4]. This ensures that an infinite force is not
needed to drive the fluid at the 3-phase interface. Our aim is to ensure
that there is not a significant variation in results as the grid resolution is
changed. We examined the grid dependency of the solution for a case with
a moving contact line by increasing the grid resolution by a factor of 8,
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from 4 to 32 cells in the contraction radius. Square cells were used so the
values correspond to to 800 to 51200 cells for both a 2D rectangular and
an axisymmetric geometry. The effect of the shape of a droplet as it moves
through a contraction is shown in Figure 2, where small differences are seen
in the shape of the deforming droplet as a function of grid density. Three
time steps are shown for the 2D case and one single time for the axisymmetric
case. Clearly, the deformation has not reached a grid independency, but the
major features do not change considerably between cases c and d. Thus the
rest of the simulations use grid c.

We have also compared our free stream droplet shape results with previ-
ous studies. Figure 3 shows a steady state droplet shape with velocity vectors
relative to the droplet velocity. Both the shape and velocity fields compare
very well, giving us confidence in the cfd-ace code.

3 Results

3.1 Slug flow

When a droplet that is initially larger than a contraction moves through
the contraction, there are essentially two scenarios that can occur. The
droplet can either form a slug in the contraction or glide through without
touching the walls (the two scenarios are shown in Figure 4). Although
the two scenarios may not always be exactly delineated, slug-like flow is
required for surface force control of droplet deformation. For low upstream
Reynolds numbers (Re ≤ 1) the deformation of a droplet travelling though a
contraction is due to a balance of the viscous extensional force and interfacial
tension forces. The viscous extensional force tends to stretch the drop out
in order to follow the stream lines while the interfacial tension force tends to
keep the drop in a spherical shape. The balance of the two forces is generally
gauged by the capillary number, which is given in equation (1) but may also
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Figure 3: Steady-state droplet shape and velocity field relative to droplet
velocity for a neutrally buoyant drop in axisymmetric Poisuille flow, Ca =
0.1 , λ = 10 . (a) From [12] (b) Current simulations using cfd-ace.
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Figure 4: Example of a filament and a slug flow through a capillary, for
non-wetting walls. The filament conditions are Re = 1 , Ca = 0.05 and
λ = 0.1 . The slug conditions are Re = 1 , Ca = 0.005 and λ = 10 .

be written as

Ca =
µcγ̇R0

σ
, (3)

where γ̇ is the extensional strain rate, and R0 is the drop diameter (see
Figure 1)

The average extensional strain rate due to a contraction can be approxi-
mated by (v2−v1)/L , where v2−v1 is the difference in mean velocity between
the two upstream and downstream channels and L is the average distance
over which this change takes place. It has been established experimentally
that for Re ≤ 1 and for contraction ratio β ≥ 4 (where β = d1/d2), that
the entry lengths and upstream vortex attachment length for flow through
a contraction can be approximated by 0.25 d2 and 0.17 d1 respectively [2].
If we assume the sum of these two lengths approximates the extensional
deformation regime through a contraction, then the extensional strain rate

γ̇ =
v2 − v1

0.25d2 + 0.17d1

. (4)

For an axisymmetric contraction v2 = β2v1 , therefore

γ̇ =
v1(β

2 − 1)

d1(0.25/β + 0.17)
. (5)
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Substituting equation (5) into equation (3) gives the contraction capillary
number

Cacon =
µcv1

σ

R0(β
2 − 1)

d1(0.25/β + 0.17)
= Ca Ω , (6)

where Ω is the contraction factor.

At Reynolds numbers greater than approximately 1 but less than ap-
proximately 100 inertia becomes important but not dominant, and surface
tension then competes with inertia and with the extensional force. By a sim-
ple order of magnitude analysis of the momentum equation, a new number
can be defined that is the ratio of surface tension to the sum of inertia and
extensional viscous forces:

Scon =
1

Cacon(1 + Re)
. (7)

A number of simulations have been performed, and the droplet shapes in
the contraction categorised into either slugs or filaments. In general a slug
was defined when the film between the slug and the wall was less than about
1/30th of the contraction diameter (one cell wide). The results are sum-
marised in Figure 5 which contains 4:1 and 6:1 contractions and viscosity
ratios of 0.1, 1 and 10. Using the contraction capillary number the results
collapse to the two delineated regions. Clearly, Scon, equation (7), is a good
indicator of the boundary between the two regions.

3.2 Contact angle effects

For the surface properties to affect the droplet shape, the droplet either has
to wet the surface or be close enough to the surface for long range van der
Waals forces to have an effect (< 100 nm which is smaller than the grid
resolution). Therefore, a droplet that is initially completely detached from
the wall must approach the wall and drain the continuous fluid away. A sharp
contraction is ideal for this as the droplet essentially approaches a point (or
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Figure 5: Reynolds number versus contraction capillary for flow through a
4:1 contraction and a 6:1 contraction under a range of conditions. Demarca-
tion between slug and filament flow is correlated to Scon.



3 Results C315

Figure 6: Contact angle effects in a rectangular 4:1 channel for Ca = 5 ×
10−3 , Cacon = 0.16 and λ = 10 .

in reality a very small surface) meaning that minimal amounts of film needs
to be drained. Thus film drainage times will not be a limiting factor. Similar
contact angle effects have been shown using Lattice Boltzmann simulations
of a collapsing confined fluid thread [9].

Many studies have shown that a moving slug will have a thin film, be-
tween it and the channel wall, which scales approximately as Ca2/3 [11, and
references therein]. However, for slugs that are initially wetting we have
observed experimentally and numerically a critical capillary number for the
drop to detach from the surface and form the classical film. This is very
similar to liquid drop detachment from a solid surface due to shear, which
occurs after exceeding critical shear rates [1] that are of the same order as
observed in our microchannels.

Given that a contraction forms ideal flow conditions for a droplet to wet
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Figure 7: Contact angle in a axisymmetric 4:1 channel for Ca = 4.3×10−4 ,
Cacon = 1.4× 10−2 and λ = 5 .

a surface, then the contact angle that the drop makes with the surface will
have a large effect on what happens to the droplet. This is clearly indicated
in Figures 6 and 7 that show the effect of changing the contact angle on
droplet deformation through two-dimensional rectangular and axisymmetric
channels respectively. For a contact angle of 30◦ the droplet wants to wet the
contraction, and some of the dispersed phase gets trapped in the upstream
corners, while the rest of the droplet forms annular flow. As the contact
angle increases, the forces holding the droplet to the wall decrease and the
droplet proceeds into the contraction. In the 90◦ case the slug formed in the
contraction rapidly deforms due to partial wall adhesion and the parabolic
velocity profile. This results in breakup and, as the residual slug exits the
contraction, some is trapped in a exit corner recirculation zone. For the
120◦ and 150◦ cases the slug front and back curvatures vary and change the
shape of the slug. Similar deformation occurs in the axisymmetric case except
that breakup occurs at higher contact angles due to higher (by a factor of 4)
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extension rates.

4 Conclusions

We have shown that under certain conditions surface forces affect the shape
of a droplet passing through a contraction. In order to help predict those con-
ditions, we introduced a new contraction capillary number and an associated
contraction surface tension number that is the ratio of the surface tension
force to the sum of inertia and extensional viscous forces. Under conditions
where surface forces affect the droplet phase, the capillary number, Reynolds
number and fluid properties are not sufficient to uniquely describe the motion
of droplets through contractions. We have shown that the droplet contact
angle can have a large effect on the droplet dynamics and thus should be
taken into account and possibly utilised when designing microfluidic droplet
manipulation systems.
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