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A thermomechanical formulation of finite
element schemes for micropolar continua
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Abstract

Recent studies highlighted the advantages of the thermomechanical
approach for developing models of material behaviour. This approach
ensures compliance with thermodynamical laws since constitutive rela-
tions are derived from a consideration of thermodynamical potentials.
Interestingly, the same thermomechanical techniques can also be used
to formulate the finite element models used to implement these consti-
tutive relations. Thus the key advantage of this type of finite element
formulation is that a direct link to the underlying physics of the prob-
lem is extended through to the model’s implementation. Here, we
show how the thermomechanical approach can be applied to finite
element schemes for models based on micropolar continuum theory.
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Material points that make up a micropolar continuum possess rota-
tional degrees of freedom, in addition to the conventional translational
degrees of freedom. Hence, the equations governing boundary value
problems for this class of materials differ from those of their classical
counterparts—both from the viewpoint of the constitutive law and
the governing conservation laws. We outline the development of finite
element schemes for elastic and plastic micropolar materials using the
thermomechanical approach. The analysis indicates that while the
traditional Galerkin method admits a range of weighting functions,
the second law of thermodynamics provides an additional constraint
that narrows the choice of admissible functions.
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1 Introduction

A material point in a classical continuum has three translational degrees of
freedom. While this type of continuum is appropriate for most materials,
there are a number of materials that are better represented as continua with
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additional degrees of freedom: for example, fibrous composites (Lakes [6]),
granular materials (Tordesillas and Walsh [10]), and some biological materi-
als like bone (Onck [8]). In cases where a material is composed of relatively
rigid micro-scale structures that can spin independently, a micropolar or
Cosserat continuum might be more appropriate. Unlike a classical contin-
uum, the motion of each point in a micropolar continuum is described both
by a displacement and a rotation.

Whether based on micropolar or classical continua, all constitutive mod-
els must obey the laws of thermodynamics. However, in most cases this
basic requirement is enforced retroactively, that is, constitutive laws are first
proposed and thermodynamical restrictions are then applied as a constraint.
There are two disadvantages to this approach:

• the added constraints may unduly limit the model’s behaviour;

• the constraints may not restrict the model adequately, leading to non-
physical results.

Alternatively, a thermomechanical approach can be used to develop the
model. This approach was first developed for classical materials as a means
of ensuring physical behaviour without introducing unnecessary restrictions
into the model (Ziegler [14], Collins and Houlsby [2]). The material behaviour
is first described in terms of two thermodynamical potentials. Constitutive
relations and the underlying balance equations are then derived directly from
the first and second laws of thermodynamics using these potentials. Walsh
and Tordesillas [13] recently demonstrated the use of this approach in the
development of micropolar constitutive models of granular media. For fur-
ther details on the application of the modern theory of thermomechanics to
constitutive modelling, see [13] and the papers cited therein.

An important advantage of the thermomechanical approach is that it
need not be limited to the development of constitutive laws alone. The same
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ideas can be applied in the formulation of finite element schemes. While
this type of approach is common practice in the development of elastic finite
element models (fems), the same cannot be said for plastic materials. Many
models of plastic behaviour are based on quasi-thermodynamic postulates
rather than the laws of thermodynamics themselves (Lubliner [7]). Thus
it can be difficult to relate the model’s numerical implementation to the
physics underlying the material behaviour. In contrast, a thermomechanical
formulation of the finite element scheme establishes this link from the outset.

Here we discuss how a thermomechanical approach is applied to the for-
mulation of finite element models of micropolar materials. Section 2 outlines
the theory behind micropolar continua. In Section 3 we show how finite
element schemes are derived for elastic and plastic materials using the ther-
momechanical formulation. Conclusions are drawn in Section 4.

2 Micropolar continuum

The motion of a point in a classical continuum is described by a single dis-
placement vector ui. Any rotation experienced by the point is due to gradi-
ents in the displacement field. In contrast, points within a micropolar con-
tinuum may experience rotations which are independent of the displacement
field. Accordingly, each point is assigned a rotation vector ωi. The rota-
tion vector may be decomposed into two parts: a gross body rotation, Γi,
describing rotation due to the point’s motion about an external reference
frame; plus an additional component due to the point’s intrinsic spin, ψi.
The gross body rotation is related to the vector field via

Γi = −1

2
eijkuj,k , (1)

where eijk is the permutation tensor (e123 = e231 = e312 = −e213 = −e132 =
−e321 = 1), and subscript commas imply differentiation, that is, (),i =
∂()/∂xi .
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The deformation of a micropolar continuum is described by two tensor
quantities: the microstrain εij and the curvature κij. The microstrain and
curvature are related to the displacement and rotation fields by

εij = ui,j + eijkωk , (2)

κij = ωi,j . (3)

Individual points in a micropolar continuum transmit moments as well as
forces, giving rise to a stress-like tensor known as the couple stress. Just as
the force fi per unit area of a surface with a unit normal vector ni is related
to the stress σij via

fi = σijnj , (4)

the moment per unit area mi is related to the couple stress µij via

mi = µijnj . (5)

The equations of equilibrium governing the stress and couple stress are

σij,j = 0 , (6)

µij,j − eijkσjk = 0 . (7)

Note that the stress tensor is no longer symmetric. The anti-symmetric
component is needed to balance additional moments created by the couple
stress.

Stress-strain relations for micropolar continua can be developed using a
thermomechanical approach (Walsh and Tordesillas [13]). In the thermo-
mechancial approach, the constitutive model is developed based on a consid-
eration of two potential functions. Here we use the free energy ψ and the
dissipation function D, although other combinations of energy functions are
possible (Collins and Houlsby [2]). Equations relating the potential functions
to the kinematic variables can be obtained from the first and second laws of
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thermodynamics. It may be shown that the following equations hold for the
free energy and the dissipation function:

σij −
∂ψ

∂εij
= 0 , µij −

∂ψ

∂κij
= 0 , µij,j −

∂ψ

∂ωi
= 0 , (8)

∂ψ

∂εpij
+
∂D

∂ε̇pij
= 0 ,

∂ψ

∂κpij
+
∂D

∂κ̇pij
= 0 , (9)

where εpij is the plastic strain and κpij is the plastic curvature. Stress-strain
relations for specific materials are derived from these equations by expressing
the free energy and dissipation function in terms of the strain and curvature.

3 Thermomechanical finite element

formulation

The discussion that follows is divided into two subsections. The first outlines
the formulation of finite element models for elastic micropolar materials,
while the second provides an outline of the theory for micropolar materials
undergoing plastic deformation. In both subsections a “thermomechanical”
approach is taken in which the equations governing the finite elements are
determined from a consideration of the thermodynamics of the material body.
Houlsby and Puzrin [5] give an example of the thermomechanical approach
applied to classical fem.

Although the theory is applicable to three dimensional models, for the
sake of brevity and simplicity, the examples given in the discussion refer to
two dimensional models alone.
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3.1 Elastic micropolar models

The finite element method approximates the behaviour of a continuum by
subdividing the body into a finite number of regions or elements. Each
element is connected to its neighbours through a set of points or nodes.
Constitutive variables describing the state of the material body are assigned
to each node. The values of the constitutive variables within each element
are assumed to be simple functions of these nodal values. For example, the
displacements and rotations within each element are related to the nodal
displacements and rotations by interpolation functions, that is,

{u} = [N ]{d} , (10)

where {u} is a vector made up of the displacement and rotation field compo-
nents, [N ] is the interpolation function matrix and {d} is a vector composed
of the displacements and rotations of the nodal points. A convention of com-
bining displacement and rotation components into a single vector is used
throughout this paper. For example, in two dimensions, the vector

{u} =


u1

u2

ω

 , (11)

where ui are the components of the displacement field within the element
and ω is the rotation field within the element. This has been done for the
sake of brevity and to highlight similarities with conventional finite element
methods.

Once the continuum has been subdivided, the problem becomes one of
finding the nodal displacements for a given set of boundary conditions. A
relationship between the nodal points’ displacements and the applied forces
are found using thermodynamical principles. For an elastic material, the first
law of thermodynamics states that a variation in the internal energy of each
element, δUe, is equal to the external work done on the nodes, δWe, that is,

δUe = δWe . (12)
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The external work is the product of the vector of external forces and moments
acting on the nodes, {f}, with the respective virtual nodal displacements and
rotations, {δd}:

δWe = {δd}T{f} . (13)

The internal energy

δUe =

∫
V

{δε}T{σ} dV , (14)

where V is the volume (or area in two dimensions) of the element, {δε} is a
vector composed of the virtual strain and curvature components arising from
the virtual nodal displacements, and the vector {σ} contains the stress and
couple stress components. The stress and strain vectors are

{σ} = {σ11 , σ22 , σ12 , σ21 , µ1 , µ2}T , (15)

{ε} = {ε11 , ε22 , ε12 , ε21 , κ1 , κ2}T . (16)

The strain and curvature components {ε} are obtained from the nodal
displacements {d} using an element matrix [B] such that

{ε} = [B]{d} . (17)

The strain-displacement matrix, [B], is found in turn using the expression for
the displacement and rotation field components in equation (10). From the
definition of the strain and the curvature in equation (2) and equation (3),
the matrix

[B] = [∂∗][N ] , (18)

where the operator

[∂∗] =



∂
∂x

0 0
0 ∂

∂y
0

∂
∂y

0 1

0 ∂
∂x

−1
0 0 ∂

∂x

0 0 ∂
∂y


. (19)
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Unlike the classical case, this matrix is not only made up of partial derivatives
of the interpolation functions but also the functions themselves.

For a linear elastic material the stress and couple stress components are
related by

{σ} = [E]{ε} , (20)

where [E] is the elastic stiffness matrix. Using this identity and the virtual
work equation (12) we have

[Ke]{d} = {f} , (21)

where the element stiffness matrix

[Ke] =

∫
V

[B]T [E][B] dV . (22)

Whereas the derivation of the stiffness matrix is similar to that of a classi-
cal continuum element, differences do exist in the details of the computation.
To highlight the differences between the fem formulation for classical and
micropolar continua, let us turn our attention to the calculation of the stiff-
ness matrix for a two dimensional element. To simplify the discussion, we
consider the behaviour of a linear triangular element.

For a triangular element with three nodes, the shape function [N ] is a
linear function of position. For classical materials, this means that the strain-
displacement matrix [B] (and hence the integrand in the element stiffness
matrix) is constant throughout the element. However, in the micropolar case,
the integrand in the element stiffness matrix varies within the element. The
integrand for the micropolar material can be either evaluated directly or using
Gauss quadrature. Either way, the computation for the integrand results in
a significant increase in the amount of cpu time required to calculate the
element stiffness matrix.

The varying integrand in the element stiffness matrix arises because the
rotation field is given by a polynomial of the same order as that used in
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the element’s displacement field. One might be tempted to reduce the order
of the rotation polynomial used in order to speed up the calculation. For
a linear triangular element however, this would result in a classical model
as constant rotation gives zero curvature within the element. In elements
with more nodes (and hence higher orders of interpolation) this step may be
justified (Ehlers and Volk [4]).

We stress that even when using higher order elements, numerical quadra-
ture rules used for classical continua do not necessarily translate automati-
cally to micropolar finite element methods. For example, in a classical frame-
work, 2 × 2 quadrature rules are sufficient to obtain a convergent solution
when using eight-node quadrilateral elements. However, this is not true of
micropolar finite elements, which need 3 × 3 quadrature points to ensure
convergence for quadratic interpolation (Adhikary and Dyskin [1]).

3.2 Plastic micropolar models

For plastic materials, the first law of thermodynamics is

δψe = δWe −De , (23)

where δψe is a variation in the free energy and De is the rate of dissipation
of the element. Equation (23) is rewritten as∫

V

{δε}T
{
∂ψ

∂ε

}
dV = {δdt}T{f} −

∫
V

{δεP}T{χ} dV , (24)

where {χ} are the dissipative stresses and couple stresses; and {εP} are the
plastic strains and curvatures. Here the strain vector {ε} is composed of both
the total strain and plastic strain components:

{ε} =
{
εt11 , ε

t
22 , ε

t
12 , ε

t
21 , κ

t
1 , κ

t
2 , ε

p
11 , ε

p
22 , ε

p
12 , ε

p
21 , κ

p
1 , κ

p
2

}T
. (25)



3 Thermomechanical finite element formulation C346

Likewise, the vector {d} contains new variables in addition to the nodal
points’ rotations and displacements. The components of the plastic strains
and curvatures are written in terms of plastic displacements upi and rota-
tions ωp:

εpij = upi,j + eij3ω
p , (26)

κpi = ωp,i . (27)

Like the displacement and rotation variables, the values of the plastic dis-
placement and rotation variables within each element are determined by in-
terpolating the values of the variables at the node points dp, that is,

{up} = [N ]{dp} . (28)

The second law of thermodynamics is satisfied by requiring that the rate of
dissipation is non-negative:

De = {δdp}T
∫
V

[B]T{χ} dV ≥ 0 . (29)

Expressing equation (24) in terms of the nodal displacements gives

{δd}T
∫
V

[B]T
{
∂ψ

∂ε

}
dV = {δdt}T{f} − {δdp}T

∫
V

[B]T{χ} dV . (30)

This equation must hold for all arbitrary variations in the nodal displace-
ments {δd}, and consequently may be decomposed into two parts, represent-
ing contributions from the total strain and plastic strain components:∫

V

[B]T
{
∂ψ

∂εt

}
dV = {f t} , (31)∫

V

[B]T
{
∂ψ

∂εp

}
dV = −

∫
V

[B]T{χ} dV , (32)

where equation (32) holds if
∫
V
‖{δεp}‖ dV 6= 0 . Note that this step is not as

trivial as it would first appear due to the dependence of {χ} on the increment
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in the plastic strain. For a more detailed discussion we refer the reader to
Valanis [12] and Walsh and Tordesillas [13].

The finite element equations derived using the thermomechanical ap-
proach are equivalent to those obtained via the Galerkin formulation. Us-
ing this formulation, the equations of equilibrium are rewritten as a set of
weighted integrals:∫

V

[W ]Tσij,j dV = 0 ;

∫
V

[W ]T (µi,i − eij3σij) dV = 0 ; (33)∫
V

[W ]T
(
∂ψ

∂εpij
+
∂D

∂ε̇pij

)
dV = 0 ;

∫
V

[W ]T
(
∂ψ

∂κpij
+
∂D

∂κ̇pij

)
dV = 0 . (34)

Setting the weighting function [W ]T = [N ]T in (33) and integrating by parts
gives ∫

S

[N ]TσijnjdS =

∫
V

[N ]T,jσij dV , (35)∫
S

[N ]TµinidS =

∫
V

([N ]T eij3σij + [N ]T,iµi) dV , (36)

which is equivalent to equation (31). Similarly, equation (32) is recovered
by letting [W ]T = [B]T in (34). Interestingly, note that other weighting
functions may lead to solutions that do not comply with the second law
of thermodynamics. Specifically, if another choice of weighting function is
used in equation (34), it no longer follows from the dissipation inequality,
equation (29), that {δdp}T

∫
V
[B]T

{
∂ψ
∂εp

}
dV ≤ 0 . Hence, it is possible the

model will predict the free energy generated exceeds the work done on the
element, that is, δψ > δW .

4 Conclusion

Recent advances in the development of constitutive models of complex and
heterogeneous materials have been based on Cosserat or micropolar theory
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as well as other “enriched” continua. These models have generated new per-
spectives and concepts which are only now beginning to be systematically
examined. In particular, a key challenge confronting modellers of these new
breed of constitutive models is the need to check, retroactively, that these
models are indeed consistent with the laws of thermodynamics. However, in
the thermomechanical approach, compliance with thermodynamics is guar-
anteed at the outset, since constitutive relations are derived directly from
the laws of thermodynamics.

We have shown how the thermomechanical approach can also be applied
to the formulation of finite element models of micropolar continua undergoing
both elastic and plastic deformations. This technique then offers the added
advantage that the implementation phase of the model is linked directly to
the underlying physics. Tordesillas et al. [9] and Tordesillas and Walsh [11]
discuss examples of this approach applied to specific material models. An
interesting finding borne out by this analysis is that while the traditional
Galerkin method admits a range of weighting functions, the second law of
thermodynamics provides an additional constraint that narrows the choice of
admissible weighting functions. In particular, we have shown that the second
law of thermodynamics is satisfied if the weighting function is given by the
strain-displacement matrix: other weighting functions may not guarantee
compliance with this law.

Finally, while we have only considered micropolar materials in this pa-
per, we anticipate that more complex microdeformation (Eringen [3]) can be
accounted for using the same principles.
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