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Modelling vortex-induced vibration with
driven oscillation
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Abstract

Two-dimensional simulations of flow past an elastically mounted
cylinder, and flow past an externally driven oscillating cylinder were
performed at a Reynolds number of 200. The results of both are com-
pared to see if the driven oscillation could model the coupled fluid-
structure flow of the elastically mounted cylinder. The driven system
could model the elastically mounted system, but was very sensitive to
input parameters. We argue that this sensitivity could cause experi-
mental discrepancies between the two systems.
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Table 1: nomenclature.
A∗ Amplitude ratio, y/D
CL Lift coefficient, FL/(0.5ρv2D)
CE Energy transfer coefficient,

∫
T

CLv dt
D Cylinder diameter
FL Lift force / unit length
f Oscillation frequency
f ∗ Normalised oscillation frequency, fD/U
fN Natural structural frequency
f ∗N Normalised natural frequency, fND/U
fSt Vortex-shedding frequency from a stationary cylinder
m∗ Mass ratio, mcyl/(

π
4
D2ρL)

Re Reynolds number, UD/ν
St Strouhal number, fStD/U
U Free-stream velocity
v Transverse cylinder velocity
y Transverse cylinder displacement
ζ Damping ratio, c/ccrit
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1 Introduction

Vortex-induced vibration (viv) of bluff structures can occur whenever a bluff
structure is immersed in a fluid stream. If the frequency of this vibration
is close to a natural frequency of the bluff structure, large scale oscillations
occur, ultimately resulting in the failure of the structure.

In an attempt to study the fundamental aspects of viv, simplified experi-
mental models are used. The most common of these is an elastically mounted
cylinder constrained to oscillate across the flow [5, 8, 6, e.g.]. While simpli-
fied, this model is still subject to the complexity of coupled fluid-structure
interaction.

As the steady-state oscillations of the elastically mounted cylinder often
appear sinusoidal, it has often been hypothesised that the fluid and structural
systems can be decoupled. The oscillation is then externally driven, rather
than responding to the flow. The transverse driven oscillating cylinder has
been studied by many [1, 13, 4, e.g.].

The results from driven oscillation experiments, in comparison to viv
experiments, are mixed. An accurate comparison can be made between the
wakes generated, and the general flow topology. However, the energy trans-
fer coefficient CE during driven cylinder experiments has been shown to be
negative whereas it is positive during viv at similar flow conditions. Dur-
ing experiments, the sign of CE is inferred from the sign of the phase angle
between the lift force on the cylinder, and the cylinder displacement [2].
The discrepancy means that the driven oscillation experiments predict no
vibration, when in fact viv occurs at its largest amplitudes.

Some attempts have been made at directly predicting viv from driven
oscillation results. Sarpkaya [9] had only limited success, and prescribed a
limiting amplitude during viv that has since been exceeded [7]. Subsequently
Staubli [10] only found agreement between prediction and experiments over
a small range of oscillation frequencies. The more recent direct comparison
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of [3] showed these discrepancies quite clearly. This discrepancy recently led
Williamson & Govardhan [12] to ponder whether it was at all possible to
model viv with pure-tone driven oscillation.

Here we hypothesise that it is possible to model viv with driven os-
cillation if the frequency and amplitude of oscillation are matched closely
(< 1% error). The results we present were obtained at a Reynolds number
Re = 200 , using two-dimensional simulation. While this flow is inherently
two-dimensional, and the Re used during experiments render the flow three-
dimensional, the results shown seem promising for the modelling of viv with
driven oscillation.

2 Computational method

A spectral-element method was employed to solve the two-dimensional in-
compressible Navier–Stokes equations. A fuller description of this method is
given in [11]. An accelerated frame of reference was employed that was fixed
to the cylinder, to allow the cylinder to oscillate across the stream in both
the viv and driven oscillation simulations. A 508 macro-element mesh with
overall dimensions of 30D downstream, and 15D upstream and to either side,
was used. This mesh is shown in Figure 1.

Eighth-order tensor product Lagrange polynomials, associated with
Gauss–Legendre–Lobatto interpolation points, were employed over each ele-
ment. This rendered the scheme used as an h-p method. This means that
the macro spatial discretisation h could be changed separately to the order p
of the interpolating polynomials.

A grid resolution study was performed by incrementing the order p of the
polynomials, and performing simulations of flow past a fixed cylinder. The
parameter compared between resolutions was the Strouhal number St. The
value of St = 0.198 was found to vary by < 1% for p > 6 . A polynomial
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Figure 1: The mesh used for both the viv and driven oscillation simulations.
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order p = 8 was therefore employed throughout this study.

A second order time-splitting scheme was used for both the viv and driven
oscillation cases. The time integration for the viv simulations employed a
semi-implicit scheme, with an Adams–Bashforth 3rd-order routine used to
obtain the first guess used during the internal iteration. This was required
due to the coupling of the flow and cylinder movement. Two time steps, δτ =
0.005 and δτ = 0.01 were tested with the semi-implicit scheme. It was found
that at U∗ = 5 , f ∗ and A∗ differed by < 1%. Therefore, a time step of δτ =
0.01 was employed throughout this study with confidence that this time step
produced physically meaningful results. The driven oscillation simulations
used an explicit integration scheme, as the cylinder position was prescribed
externally. Interestingly, while each time step of the explicit scheme used
less cpu time than the semi-implicit scheme, the time step employed was an
order of 10 smaller, resulting in more cpu time overall.

3 Results

3.1 Vortex-induced vibration

To allow a comparison between vortex-induced vibration (viv) and driven
oscillations, a set of viv results were obtained. For all of these simulations, a
mass ratio m∗ = 10 , where m∗ is the ratio between the mass of the cylinder
structure and the mass of displaced fluid. A damping coefficient was used
that yielded a damping ratio ζ = 0.01 , resulting in a combined mass-damping
parameter m∗ζ = 0.1 .

To vary the oscillation frequency, the natural frequency of the system was
varied by altering the value of the spring constant k. Three distinct regions
of amplitude response were observed, with the highest magnitude response
occurring at natural frequencies close or equal to the shedding frequency of
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a stationary cylinder, fSt. At these natural frequencies, the shedding fre-
quency of the wake was observed to synchronise with the natural frequency
of the structure. Therefore, this response regime was labeled the synchroni-
sation region. Outside this region, shedding was at approximately the same
frequency as the shedding from a fixed cylinder, fSt.

This synchronisation region can be clearly identified in Figure 2a and 2b.
Figure 2a shows A∗ plotted against the normalised response frequency f ∗.
This plot clearly shows the sudden jump to larger amplitudes with synchro-
nisation, and the sudden decrease in amplitude of oscillation with the loss of
synchronisation. Figure 2b shows the ratio of response frequency f to the
natural frequency fN , plotted against the normalised response frequency f ∗.
This plot shows the sudden synchronisation of the wake to the natural fre-
quency, as the natural frequency approaches the wake shedding frequency of
the stationary cylinder, fSt.

3.2 Synchronisation during driven oscillation

Presented in Figure 3 are the synchronisation boundaries for the driven cylin-
der case, in the A∗ versus f ∗ plane. Also plotted are those points from viv
cases where synchronisation occurred. See that almost all of the viv cases
that synchronised fall inside the driven oscillation synchronisation bound-
aries. This indicates that during synchronisation, the cylinder oscillation has
control of the wake, and overrides the ’natural’ Von Karmen instability that
causes the wake to oscillate in the stationary cylinder case. Also, as only
pure-tone driven oscillation was used during this investigation, it seems that
it is this fundamental frequency that has the major effect on synchronisation.

Whereas the lower frequency synchronisation boundary presented in Fig-
ure 3 is well defined, the upper boundary is not and requires further work
to clearly define. This boundary is difficult to define due to the high sen-
sitivity of the system to input frequency. For a given amplitude, varying
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Figure 2: (a) A∗ versus normalised natural frequency. The largest ampli-
tudes occur between f ∗N = 0.16 and f ∗N = 0.22 , bracketing the shedding
frequency from a stationary cylinder, fSt (- - -). (b) The ratio of response
frequency f to natural frequency fN , versus normalised natural frequency f ∗N .
The dash-dot line (- — -) is fSt/f

∗
N , showing that outside the synchronisation

region, the vortices shed at approximately the fixed cylinder frequency fSt.
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Figure 3: Synchronisation boundaries for the driven oscillation case. � rep-
resents data points used for synchronisation boundary. - represents line of
best fit for synchronisation boundary. ◦ represents viv synchronised cases.

the normalised oscillation frequency by as little as 10−3 could change the
magnitude of the lift force on the cylinder by as much as 25%. It could also
result in synchronisation taking up to 5 times as long, or completely inhibit
synchronisation.

3.3 Energy transfer during driven oscillation

For driven oscillation to be a useful model of viv, it needs to exhibit similar
energy transfer characteristics to the viv case. Energy transfer is quantified
as the work done on the cylinder by the fluid over one cycle of oscillation.
This quantity is normalised to return an energy transfer coefficient CE.

During steady-state, synchronised viv, the overall energy transfer to the
mechanical system must be zero. Therefore, if any damping is present in the
system, it is expected that the work done on the cylinder by the fluid will
be equal to the work done by mechanical damping. Hence, CE during viv
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Figure 4: Energy transfer directions for the driven oscillating cylinder. −•−
represents CE = 0 . ◦ represents viv amplitudes of oscillation.

retains the same definition as during driven oscillation. For driven oscillation
to model viv, it must return a positive value of CE in regions of the A∗-f ∗

plane where viv occurs.

Figure 4 shows points of CE = 0 , effectively dividing the A∗-f ∗ plane
into CE > 0 and CE < 0 zones. It shows an upper limit on A∗ for CE >
0 , indicating a limit on the amplitude possible during viv, if the driven
oscillation is modelling viv accurately.

Also plotted are the amplitudes of viv cases, and all of these fall in
the CE > 0 region. This result is encouraging, and indicates that at the
Reynolds number tested, the driven oscillation using a pure-tone oscillation
is capturing most of the characteristics of viv. It also shows that the viv
cases occur close to the transition from positive to negative CE. The small
positive difference can be attributed to the energy required by the system to
account for energy lost through damping.

The proximity of the viv cases to the boundary between positive and
negative CE again highlights the importance of matching the input frequency
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Figure 5: CE against f ∗, A∗ = 0.5 .

closely, as high gradients of CE are observed in this area of the parameter
space. This is illustrated by plotting the values of CE versus f ∗, for a given
amplitude, as done for an amplitude A∗ = 0.5 , shown in Figure 5. It is shown
that as soon as CE becomes positive, it quickly increases with increasing
frequency f ∗. This highlights the high sensitivity of the driven system. While
a good match between the viv and driven oscillation can be obtained if the
frequency and amplitude of oscillation are matched, this matching must be
very accurate (discrepancies of < 1%), otherwise significant differences in
behaviour will be observed.

A similar sensitivity is observed in the value of A∗. Changes in the mag-
nitude of A∗ as small as 1% can result in changes in the lift force on the
cylinder of the order of 25%, resulting in similarly significant changes in
the value of CE. This sensitivity is highlighted in Figure 6. CE is plotted
against A∗ for a fixed normalised oscillation frequency f ∗ = 0.20 . CE is
shown to quickly vary as the amplitude of oscillation A∗ approaches the
transition from positive to negative CE.
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Figure 6: CE against A∗, f ∗ = 0.2 .

4 Conclusions

Experimental work has been unable to capture all of the characteristics of
vortex-induced vibration, especially the energy transfer characteristics. How-
ever, this numerical study has made good progress, showing that viv occurs
where it is expected, and the oscillations it causes are well predicted by driven
oscillation simulations.

This numerical study has shown that the driven oscillating system is
highly sensitive to the amplitude of oscillation A∗, and the oscillation fre-
quency f ∗. Changes of the order of 1% in either can change the magnitude
of the energy transfer coefficient CE by the order of 25%. In some critical
instances, this can also result in the sign of CE reversing.

While the Reynolds number is low compared to experiments, the discov-
ery of this high sensitivity could provide an explanation as to why driven
oscillation experiments predict viv should not occur when it actually occurs
at its largest amplitudes. It remains to be seen whether three-dimensional
simulations at higher Reynolds number can improve the predictions made.
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