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A new adaptive restart for GMRES(m)
method
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Abstract

gmres(m) is a Krylov subspace method for solving nonsymmet-
ric linear systems of equations. The difficulty of this method lies in
choosing the appropriate restart cycle m. We propose a new strat-
egy for the adaptive restart for gmres(m) which is based on using
the difference of the Ritz and harmonic Ritz values. We also report
on numerical experiments which show that this new approach is both
effective and robust.
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1 Introduction

Consider the problem of solving a linear system of the form

Ax = b , (1)

where A ∈ Cn×n is a sparse nonsymmetric and nonsingular matrix, and Cn×n

denotes the set of complex matrices of dimension n×n. Such linear systems
often arise in scientific computing.

gmres is one of the Krylov subspace methods for solving (1). It minimizes
the residual norm over the Krylov subspace

Km(A, r0) = span{r0, Ar0, A
2r0, . . . , A

(m−1)r0} , m = 1, 2, . . . , (2)

at every step, and r0 is the initial residual vector. In gmres, the orthonor-
mal basis (v1, v2, . . . ,vm) of Km(A, r0) is computed by orthogonalizing the
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Krylov basis {r0, Ar0, . . . , A
(m−1)r0} with Arnoldi process [2]. The computed

orthonormal basis form an orthogonal matrix Vm = [v1, v2, . . . ,vm] ∈ Cn×m .
In the Arnoldi process, scalars hi,j are also computed so that the square
upper Hessenberg matrix Hm = (hi,j) ∈ Cm×m satisfies

AVm = VmHm + hm+1,mvm+1e
H
m = Vm+1H̄m , (3)

where H̄m ∈ C(m+1)×m is the matrix Hm supplemented with an extra row
(0, . . . , 0, hm+1,m), and em is column m of the identity matrix of dimension m.
Multiplying (3) by V H

m from the left, we get

V H
m AVm = Hm . (4)

In theory [12], the full gmres converges before n iterations. But the cost for
computing the orthonormal basis of subspace Km(A, r0) increases linearly
with the iteration count. According to this drawback, the full gmres is not
practical for large linear systems of equations. In order to reduce the cost of
the full gmres, a restarted version of gmres, which restarts after each cycle
of m iterations, is often used. The restarted version is denoted by gmres(m).
Compared to the full gmres, gmres(m) requires less work and storage, but
the difficulty lies in choosing the appropriate restart cycle m. Generally, m is
selected according to numerical experience. The best way to select m has not
yet been established. A number of different approaches of adaptive restart
have been proposed [6, 10, 11, 14]. We propose a new adaptive restarting
strategy based on using the difference of the Ritz and harmonic Ritz values
which is computed from the upper Hessenberg matrices Hm and H̄m.

In Section 2 we briefly describe the Ritz and harmonic Ritz values and
their related properties. In Section 3 a new restarting strategy based on
exploiting the Ritz and harmonic Ritz values is proposed. This restarting
strategy can still work well in preconditioned gmres(m). As an example,
we make use of the preconditioner used in deflated-gmres(m, k) in Sec-
tion 4. We also report on some numerical experiments comparing the pro-
posed method with other methods in Section 5. These results show that this
new approach is both effective and robust.
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2 Ritz and harmonic Ritz values

The Ritz and harmonic Ritz values and vectors are approximate eigenvalues
and eigenvectors. Recently, they have been used in a number of modified
versions of gmres(m) to achieve better performance. For example, the har-
monic Ritz values and vectors are used in morgan(m, k) [8, 9]. We make
different use of the Ritz and harmonic Ritz values.

Definition 1 (Ritz values [13]) If Vk is a linear subspace of Cn×n, then
λk is a Ritz value of A with respect to Vk with Ritz vector uk when (Auk −
λkuk)⊥Vk , uk ∈ Vk , uk 6= 0 .

In the context of the gmres, Vk is the Krylov subspace Km(A, r0). A Ritz
value λ with Ritz vector u = Vmym , ym ∈ Cm×1 , with respect to Km(A, r0)
satisfies (Au− λu)⊥Km(A, r0) ⇔ V H

m (AVmym − λVmym) = 0 , where Vm is
defined in equation (3). Using relation (4), we have Hmym = λym . That is,
the eigenvalues of Hm are the Ritz values of A with respect to the Krylov
subspace Km(A, r0).

We skip the definition for harmonic Ritz values and vectors, which are
found in [13]. In order to compute the harmonic Ritz values from the Krylov
subspace Km(A, r0), we use of the following theorem.

Theorem 2 (Sleijpen et al. [13]) Let Vk be some k-dimensional subspace.
A value λ̄k ∈ C is a harmonic Ritz value of A with respect to the subspace
Wk := AVk if and only if Auk − λ̄kuk⊥AVk for some uk ∈ Vk , uk 6= 0 .

According to this theorem, a harmonic Ritz value λ̄ with harmonic Ritz
vector u = Vmym , ym ∈ Cm×1 , with respect to subspace AKm(A, r0) satisfies

(Au− λ̄u)⊥AKm(A, r0) ⇔ (AVm)H(AVmym − λ̄Vmym) = 0 ,
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where Vm is the same as in equation (3). Using equations (3) and (4), we
have H̄H

m H̄mym = λ̄HH
mym . When Hm is nonsingular, it can be rewritten as

H−H
m H̄H

m H̄mym = λ̄ym . That is, the eigenvalues of H−H
m H̄H

m H̄m are the har-
monic Ritz values of A with respect to subspace AKm(A, r0). Equation (3)
allows us to rewrite H−H

m H̄H
m H̄m as Hm +h2

m+1,mfmeH
m, where fm = H−H

m em .

3 An adaptive restarting strategy

To reiterate, we know that

1. the eigenvalues of matrix Hm are the Ritz values with respect to the
Krylov subspace Km(A, r0), and

2. the eigenvalues of Hm +h2
m+1,mfmeH

m are the harmonic Ritz values with
respect to the subspace AKm(A, r0).

Note that when an invariant Krylov subspace has been found, the harmonic
Ritz values equal to the Ritz values, since in this case hm+1,m = 0 . From
Saad et al. [12], gmres converges when hm+1,m = 0 . Goossens et al. [5] gave
an upper bound of the 2-norm of the second item in Hm + h2

m+1,mfmeH
m:

‖h2
m+1,mfmeH

m‖2 ≤
h2

m+1,m

σmin(Hm)
, (5)

where σmin(Hm) is the smallest singular value of Hm.

This upper bound shows that the difference between the Ritz and har-
monic Ritz values can only be large when |hm+1,m| is large or σmin(Hm) is
small, which is the case when gmres stagnates. Goossens et al. suggested
that the difference between the Ritz and harmonic Ritz values be used for
predicting the stagnation of gmres [5]. Our main contribution is to put
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this result to practical use in gmres(m). That is, we propose an adaptive
restarting strategy using this result.

We compute the difference between the maximum Ritz value λmax and
the maximum harmonic Ritz value λ̄max per iteration. If it is larger than the
one generated from the last iteration, then we restart. Otherwise no restart
is carried out. Note that the maximum restart cycle should be specified in
view of memory limitations. Minimum restart cycle can be specified too.

Our new method is denoted as ritz-gmres(mmin, mmax), where mmin is
the minimum restart cycle and mmax is the maximum restart cycle. Al-
gorithm 1 details the computational scheme. Compared with the classical
gmres(m), extra work for computing λmax and λ̄max is required. But the
cost only depends on the dimension of the Krylov subspace, which is small
(≤ mmax). In Section 5 we show that this new adaptive restart is both
effective and robust.

4 Application in preconditioned GMRES(m)

The new restarting strategy proposed in Algorithm 1 can also work well in
preconditioned gmres(m). As an example, we make use of the precondition-
ing technique used in deflated-gmres(m, k).

It has been observed that the convergence of gmres(m) may be slower
than the full gmres. It appears as if the restarting procedure loses the
information on the smallest Ritz values [3, 4]. In order to eliminate those
smallest Ritz values, a preconditioning technique, named deflation, is used
in deflated-gmres(m, k) [3, 4].

Let |λ1| ≤ |λ2| ≤ · · · ≤ |λn| be the Ritz values of A, and ui be the
Ritz vector with respect to λi. In deflated-gmres(m, k), a fixed number l
(l = 1 in this paper) of Ritz vectors u1, u2, . . . ,ul are pulled out after each



4 Application in preconditioned GMRES(m) C415

Algorithm 1: ritz-gmres(mmin, mmax)

Require: ε is the tolerance for the residual norm
1: i := 0; convergence:=false;
2: repeat
3: r0 := b− Ax0; β := ‖r0‖2; v1 := r0/β;
4: m := 1;
5: while m ≤ mmax do
6: i := i + 1;
7: v̄ := Avm;
8: for j = 1, 2, . . . ,m do
9: H(j, m) := vH v̄;

10: v̄ := v̄ −H(j, m)vi;
11: H(m + 1, m) := ‖v̄‖2;
12: vm+1 := v̄/‖v̄‖2;
13: if ‖rm‖2 < ε then
14: convergence:=true; break;
15: compute fm = H−Hem and H = H + H(m + 1, m)2fmeH

m;
16: compute the maximum eigenvalue λmax of H;
17: compute the maximum eigenvalue λ̄max of H;
18: Dcur := |λmax − λ̄max|;
19: if (i > 1 and Dcur > Dpre and m ≥ mmin) or m = mmax then
20: y = miny ‖βe1 −Hy‖2;
21: xm = x0 + Vmy;
22: x0 := xm;
23: Dpre := Dcur;
24: break;
25: Dpre := Dcur;
26: m := m + 1;
27: until convergence
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restart. They are used to increase an orthonormal matrix Uj. The right
preconditioner

M−1 = In + Uj

(
|λn|T−1

j − Ij

)
UH

j , Tj = UH
j AUj , (6)

is updated after each restart until the dimension of Uj equals a number k.
In and Ij are the identity matrices with dimension n and j. After precondi-
tioning by (6), the smallest Ritz values λ1, . . . , λj are removed.

Now consider applying the restarting strategy proposed in Section 3. As
the Ritz values and vectors are already used in deflated-gmres(m, k), the
extra cost of applying the proposed restarting strategy is only the cost for
computing the maximum harmonic Ritz value. Since the computed Ritz
vectors are not reliable when the dimension of Krylov subspace is too small,
we suggest that the adaptive restarting strategy should not be carried out
until no Ritz vector is needed any more, in other words, until the dimension
of Uj equals to k:

• Run deflated-gmres(mmax, k) for the first k/l cycles;

• Run ritz-gmres(mmin, mmax) with preconditioner M−1.

This preconditioned method is denoted as deflated-ritz(mmin, mmax, k),
where k denotes the maximum dimension of the orthonormal matrix U in (6).

5 Numerical experiments

In this section we provide a few experimental results to show the efficiency of
the adaptive restarting strategy proposed in Section 3. At first, we compare
ritz-gmres(mmin, mmax) with classical gmres(m) without preconditioning
in Example 5.1. Then, we compare deflated-ritz(mmin, mmax, k) with
deflated-gmres(m, k) in Example 5.2.
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All experiments have been performed on a Dell PowerEdge 1750 computer
(cpu: Intel(R) Xeon(R) 3.00GHz, os: Red Hat Linux 9.0, 4GB main mem-
ory), used in single processor mode in double precision. The initial guess x0

is set to zero and the system is scaled so that the initial residual vector has
unit length. The tolerance ε for the residual norm is set to 10−12. Execution
of each method is interrupted if the residual norm does not converge after
20,000 iterations. mmax is set to 50 and mmin is set to 1 in Example 5.1,
and 5 in Example 5.2. clapack’s routines dgeev and zgeev are used for the
computation of the Ritz and harmonic Ritz values and vectors [1].

5.1 First example

We consider the problem which arises from the 5 point center difference
discretization of the elliptic partial differential problem [7] in the unit square
region Ω = [0, 1]× [0, 1] .

− uxx − uyy + D((y − 1/2)ux + (x− 1/3)(x− 2/3)uy)) = G ,

u|∂Ω = 1 + xy ,

where G is defined so that u = 1+xy on Ω. The mesh size h is set to 1/513 .
Hence, the dimension of the coefficient matrix is 262, 144 . Dh is set to 2−3,
2−4, 2−5, 2−6 and 2−7. Table 1 presents the results for various choices of Dh.
For each Dh, the shortest computation time is emphasised. From Table 1, see
that ritz-gmres(1, 50) is much more successful than the classical gmres(m)
since it converges for all the Dh. The computation time is much shorter too.

Next we study the real restart cycles of ritz-gmres(1, 50). Average
and maximum values of the real restart cycles are shown in Table 2. From
Table 2 see that the real cycles are rather small for all Dh. As an exam-
ple, we plot all the real restart cycles in Figure 1 for Dh = 2−4 . Since
in this case, the average value of the real restart cycles is about 5 and the
maximum value is 27, we compare the convergence of ritz-gmres(1, 50) to
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Table 1: Results for Example 5.1 (T: time(sec) I: iterations)
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Table 2: Restart cycle of ritz-gmres(1, 50) for Example 5.1

Dh 2−3 2−4 2−5 2−6 2−7

Average restart cycle 4.77 4.92 5.02 5.85 5.65
Maximum restart cycle 25 27 29 31 28
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Figure 1: Restart cycle of ritz-gmres(1, 50) for Example 5.1 (Dh = 2−4)
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Figure 2: Residual norm versus computation time for Example 5.1 (Dh =
2−4)
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Figure 3: Residual norm versus iterations for Example 5.1 (Dh = 2−4)
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Figure 4: |λmax − λ̄max| near step 6897 for Example 5.1 (Dh = 2−4)

gmres(5) and gmres(27) in Figures 2 and 3. From Figures 2 and 3, we find
that although ritz-gmres(1, 50) is more efficient computing the orthonor-
mal basis of the Krylov subspace on the average, it converges faster in terms
of both iterative number and computation time. These results show that
ritz-gmres(mmin, mmax) is more efficient than the classical gmres(m).

We also compute all the values of |λmax−λ̄max| in ritz-gmres(1, 50), gm-
res(5) and gmres(27) of the first 12, 063 iterations since ritz-gmres(1, 50)
converges after 12, 063 iterations. We find that ritz-gmres (1, 50) has more
small values of |λmax − λ̄max| than the other two methods. In detail, ritz-
gmres(1, 50) has 1, 873 values of |λmax − λ̄max| smaller than 0.000001 , and
gmres(27) has only 336 and gmres(5) has none. We plot the values of
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Table 3: Results for Example 5.2
gmres(10) gmres(20) gmres(30) gmres(40) gmres(50)

Iterations 18619 9430 6419 4947 4088
Time(sec) 680 558 530 524 540

Table 4: Results for Example 5.2 (T: computation time(sec) I: iterations)

Method
k =1 k =2 k =3 k =4

I T I T I T I T
deflated-gmres(50,k) 3203 414 3057 416 2681 380 2313 344
deflated-ritz(5,50,k) 5058 393 3363 269 3676 293 2887 236

|λmax − λ̄max| near step 6897 in Figure 4, since ritz-gmres(1, 50) converges
faster than the other two methods near this step. From Figure 4 see that
the values of |λmax − λ̄max| in ritz-gmres(1, 50) are smaller than those in
gmres(5) and gmres(27). This result coincides with the observation that
the value of |λmax−λ̄max| can be used to predict the stagnation of the residual
norm of gmres.

5.2 Second example

Next, compare deflated-gmres(m, k) to deflated-ritz(mmin, mmax, k).
The matrix is a bidiagonal matrix similar to the first example in [8]. We let
the matrix have 1 + i , 2 + 2 i , . . . , 16384 + 16384 i on the main diagonal
and 0.1 + 0.1 i on the super diagonal. The right-hand side has all entries
1.0 + 1.0 i . Although this matrix does not have physical meaning, it is
helpful for verifying whether the proposed restarting strategy is efficient for
those linear systems whose eigenvalues range over wide width.

Table 3 shows the numerical results for the classical gmres(m). Whereas
Table 4 shows the results for the deflated-gmres(m, k) and the deflated-
ritz(mmin, mmax, k) for variable k. In deflated-gmres(m, k), the restart
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cycle m is set to 50 since the computed Ritz vectors used in preconditioner (6)
are not reliable when m is too small. Compare Tables 3 and 4 to see that
both deflated-gmres(m, k) and deflated-ritz(mmin, mmax, k) work bet-
ter than the classical gmres(m) because of preconditioning. From Table 4,
also see that deflated-ritz(5, 50, k) is more successful than deflated-
gmres(50, k). These results show that the new restarting strategy still works
well in the preconditioned gmres(m).

6 Concluding Remark

We proposed a new adaptive restart for gmres(m) using the difference of the
Ritz and harmonic Ritz values. The difference is estimated by the absolute
value of the difference of the maximum Ritz value and the maximum har-
monic Ritz value. Numerical experiments show that the proposed method
can work much better than the classical gmres(m) with fixed restart cy-
cle. We also apply this restarting strategy to deflated-gmres(m, k) as an
example.

Further research is needed to study the stability of the proposed restarting
strategy, including application in other preconditioned gmres(m) methods,
for solving general non-Hermitian linear systems.

Acknowledgment: We thank Kentaro Moriya for helpful discussions and
the referees who made many valuable suggestions.
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