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A modified finite volume method incorporating
radial basis functions for simulating diffusion

T. J. Moroney∗ I. W. Turner†
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Abstract

The finite volume method is the favoured numerical technique for
solving (possibly coupled, nonlinear, anisotropic) diffusion equations.
The method transforms differential equations into a system of non-
linear, algebraic equations through the process of discretisation. The
accuracy of this discretisation determines to a large extent the accu-
racy of the final solution. We present a new method of discretisation
which is designed to achieve high accuracy without imposing excessive
computational requirements. The method employs radial basis func-
tions as a means of local gradient interpolation. When combined with
high order Gaussian quadrature integration methods, the interpola-
tion based on radial basis functions produces an efficient and accurate
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discretisation. The resulting nonlinear, algebraic system is solved ef-
ficiently using a Jacobian-free Newton–Krylov method. Information
obtained from the Newton–Krylov iterations is used to construct an
effective preconditioner in order to reduce the number of nonlinear
iterations required to achieve an accurate solution. Results to date
have been promising, with the method giving accuracy several orders
of magnitude better than simpler methods based on shape functions.
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1 Introduction

The finite volume method is a numerical method for solving partial differ-
ential equations. It is particularly well suited for solving problems involving
diffusion. When using the finite volume method in this way, an integral in-
volving the diffusive flux component must be evaluated numerically. This
requires both a means of numerical integration, and a means of gradient
evaluation at the integration points. The accuracy of these two components
has a large bearing on the overall accuracy of the finite volume method.

We investigate the effectiveness of using radial basis functions as a means
of interpolation, coupled with Gaussian quadrature as a means of numerical
integration. This approach can result in highly accurate finite volume dis-
cretisations, meaning that accurate solutions can be obtained using a much
coarser mesh than is possible when using simpler discretisation methods.

By using the method of radial basis functions as an extension of shape
function-based methods, an accurate solution can be obtained in fewer iter-
ations than when using the method on its own. Furthermore, the method of
shape functions provides useful information that can be used to precondition
the underlying linear system based on radial basis functions.

Some numerical experiments are presented that demonstrate the high
accuracy of the new method, compared to that of shape functions.

2 Finite volume method

The finite volume method is based on a discretisation of the original partial
differential equation. To this end, it employs a mesh—a geometric struc-
ture consisting of a set of nodes, and the corresponding connections between
the nodes to form elements. In this work, the mesh generation software



2 Finite volume method C461

xi xi xi 

xi+1 xi+1 xi+1 xi+1 

xi 

Gauss PointsGauss Points

xi 

xi+1 

P

xi 
xi+1 

Gauss Points

(a) (b)

Figure 1: (a) Forming control volumes by joining element centroids.
(b) Three-point Gaussian quadrature over a control volume face

EasyMesh1 generates the unstructured, triangular mesh.

The finite volume method discretises the original conservation law by
forming so-called control volumes around each node in the mesh and inte-
grating over each control volume to produce a set of discrete function values
at the nodes. Figure 1(a) shows how the control volumes are formed by
joining element centroids.

To illustrate the finite volume discretisation strategy, consider the follow-
ing steady-state diffusion equation

∇ · (D∇ϕ) + S = 0 . (1)

This partial differential equation is transformed into two-dimensional control-
volume form by integrating over each control volume VP and applying the
divergence theorem

n−1∑
i=0

∫ xi+1

xi

D∇ϕ · n̂ ds + ∆AP S̄ = 0 , (2)

1See http://www-dinma.univ.trieste.it/nirftc/research/easymesh

http://www-dinma.univ.trieste.it/nirftc/research/easymesh
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where S̄ = 1
∆AP

∫
VP

S dV is the volume average of S . Equation (2) is exact
since no approximation has been made to this point of the derivation. Solving
this equation requires approximating the line integral

∫ xi+1

xi
D∇ϕ · n̂ ds using

an appropriate quadrature rule. The accuracy of this approximation has
a large bearing on the overall accuracy of the finite volume method. We
investigate approximating these integrals using Gaussian quadrature.

3 Gaussian quadrature

Numerical quadrature methods approximate the integral in (2) by a sum of
weights times integrand values∫ xi+1

xi

D∇ϕ · n̂ ds ≈
∑

j

wj [D∇ϕ · n̂]xj
. (3)

Gaussian quadrature is a higher order method than the commonly used mid-
point rule. To apply it to (3), we use the parameterisation

x(t) =
1

2
(1− t)xi +

1

2
(1 + t)xi+1 , −1 ≤ t ≤ 1 . (4)

This three-point scheme is applied over the length of the control volume face
as illustrated in Figure 1(b). It can be shown [4] that whereas the midpoint
rule is O(h2) , three-point Gaussian quadrature is O(h6) , where h is the
length of (in this case) the control volume face.

4 Interpolation

To compute the line integral (3) using the three-point Gaussian quadrature
technique outlined in Section 3, the values of the integrand D∇ϕ · n̂ are
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needed at points on the control volume face. Recall that as a result of the
finite volume discretisation, only the values of ϕ are available at the node
points in the mesh. These values must be used to reconstruct the required
gradient ∇ϕ at the control volume face. We discuss two methods to achieve
this: the well-known shape function method, and a novel method based on
radial basis functions.

4.1 Shape functions

A popular method of interpolation in the finite volume literature is borrowed
from finite element theory. The method of shape functions uses the values
of ϕ on the three vertices of a triangular element to compute a constant
interpolation of ∇ϕ within the element [3]:

∇ϕ =
3∑

i=1

Niϕi . (5)

Finite volume methods that employ these shape functions are often called
control volume-finite element, or cv-fe, methods. For problems where the
gradient does not vary greatly over small regions this approach can be sat-
isfactory. However, in many problems, there are regions where the gradient
varies significantly and using shape functions will not adequately capture this
behaviour.

Some work has been done (see for example [6]) on extending cv-fe meth-
ods of flux approximation to second and higher orders of accuracy. Typically,
a least-squares approach is used to formulate a higher-degree interpolating
polynomial. Rather than extend or improve upon this work, it was decided
to investigate alternative methods of interpolation that might also yield high-
order gradient approximations.
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4.2 Radial basis functions

The method of radial basis functions, or rbfs, is a scattered data interpo-
lation method in Rn [9]. Given a set of nodes {x1,x2, . . . ,xN} and corre-
sponding function values {ϕ1, ϕ2, . . . , ϕN} , the rbf interpolating function s
is

s(x) =
N∑

j=1

λjφ(‖x− xj‖) +

dim(πn
m)∑

k=0

ckpk(x) , (6)

where the λj and ck are determined by the conditions

s(xj) = ϕ(xj), j = 1, 2, . . . , N , (7)

and
N∑

j=1

λj pk(xj) = 0, k = 0, 1, . . . , dim(πn
m) , (8)

where πm
n denotes the space of all polynomials in n variables up to degree m

and the pk are the standard basis polynomials for this space. The choices
for φ(r) used in this study are the thin plate spline, φ(r) = r2 log(r) and the
multiquadric, φ(r) =

√
c2 + r2 . The multiquadric function includes a free

parameter c . The value chosen for this parameter affects the accuracy of the
resultant rbf interpolation. Numerical experiments determined a value that
resulted in accurate interpolations.

4.2.1 Gradient evaluation

Powell [9] showed that the function s of (6) is differentiable for both the
thin plate spline and the multiquadric on any region of Rn that excludes the
interpolation points. Thus from (6),

∇s =
N∑

j=1

λj

(
x− xj

‖x− xj‖

)
φ′(‖x− xj‖) +

dim(πn
m)∑

k=0

ck∇pk(x) . (9)
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4.2.2 Improving accuracy near boundaries

It is well known that the accuracy of rbf-based interpolations is poorest
near the convex hull of the set of nodes [5]. We overcome this problem in
two ways:

1. Using one interpolation per element, as with shape functions;

2. Incorporating boundary information into the interpolation.

The method of shape functions fits a function s that is valid only over a
given triangular element. We take the same approach when using radial basis
functions, and fit one function per element. Each function s incorporates only
a small proportion p of the total number of nodes N . In this way, points of
evaluation do not lie on or near the convex hull of the set, with the exception
of points on or near the domain boundary itself. This approach also ensures
the nonlinear method of Section 5 operates on a sparse Jacobian matrix,
since only a local set of neighbours contribute to the computed value at a
given node.

To further improve the accuracy of the interpolation, we modify the stan-
dard rbf formulation (6) so that at boundary nodes additional information
taken from the corresponding boundary condition may be included. For
example, the following boundary condition represents Newtonian heat con-
duction with an external temperature ϕ∞ :

−D∇ϕ · n̂ = h(ϕ− ϕ∞) . (10)

At boundary nodes, this equation provides information about the behaviour
of ∇ϕ . To make use of this information in the interpolation, we include an
extra term in (6) using a second radial basis function φ2 (and we will now
refer to the first as φ1 ). Assuming the first M nodes are boundary nodes
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with a boundary condition such as (10), the new form for s is

s(x) =
N∑

j=1

λjφ1(‖x− xj‖) +
M∑

j=1

γjφ2(‖x− xj‖) +

dim(πn
m)∑

k=0

ckpk(x) , (11)

where in addition to (7) and (8) we impose

∇s(xj) · n̂ = ∇ϕ(xj) · n̂, j = 1, 2, . . . ,M . (12)

5 Solution of nonlinear system

In the general nonlinear case, (2) is the P th co-ordinate function of a non-
linear system,

F(ϕ) = 0 , (13)

that must be solved to obtain the values ϕ = (ϕ1, ϕ2, . . . , ϕN)T . A Jacobian-
free Newton–Krylov method utilising gmres-dr [8] is used to solve this
system. The solution is obtained in three stages, using three different inter-
polation strategies in the evaluation of F :

1. Shape functions;

2. Radial basis functions without additional boundary information;

3. Radial basis functions with additional boundary information.

The reasons for this three-stage process are to first make use of the much
cheaper shape functions to compute a solution of reasonable accuracy, while
at the same time generating information used in preconditioning subsequent
stages. This solution is then “corrected” using radial basis functions to ob-
tain the final solution. The two stages of radial basis functions are necessary
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to ensure the solution is highly accurate before boundary information is in-
troduced. Failure to ensure this may lead to divergence since the boundary
information (which describes the behaviour of the exact solution) will not be
applicable when the solution is far from accurate.

5.1 Preconditioning

We use two preconditioners in combination. The first is a matrix of speci-
fied sparsity minimising ‖I − JM‖F , as discussed by Carpentieri, Duff and
Giraud [2]. The second is the deflation matrix of Burrage and Erhel [1] that
takes eigenvalue information from gmres-dr and forms a matrix that explic-
itly deflates the smallest k eigenvalues. The majority of the work in forming
these two preconditioners is done in stage one of the nonlinear process, un-
der the assumption that the Jacobian matrices in all three stages will share
similar spectral properties.

6 Numerical experiments

6.1 Test problem

The test problem is the steady-state heat diffusion equation

∇ · (D∇u) = −g0 (14)

with constant diffusion tensor D = diag(Dxx, Dyy) and constant source g0

on the domain 0 ≤ x ≤ a , 0 ≤ y ≤ b . The boundaries x = 0 and y = 0
are insulated, and the boundaries x = a and y = b are subject to Newtonian
cooling with external temperature ϕ∞ . Özişik [7] gave the analytic solution
of this problem. Table 1 lists the parameter values used in the experiments.
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Table 1: Parameter values for numerical experiments
Parameter Description Value

Dxx Thermal diffusivity in x direction 5.0 m2s−1

Dyy Thermal diffusivity in y direction 5.0×10i m2s−1

g0 Source 10.0 Km−2s−1

h Heat transfer coefficient 2.0 Wm−2K−1

ϕ∞ External temperature 20.0 K
N Number of nodes in mesh 139
c Multiquadric parameter 3.0
p Proportion of nodes used for interpolation 0.2
s Degree of polynomial term 3

Although this problem is linear, for testing purposes the full nonlinear frame-
work outlined above was used to compute the solution. The ratio Dyy/Dxx

was varied from 1 to 1000 to provide an increasingly challenging numerical
problem.

6.2 Results and discussion

Figure 2(a) shows the accuracy of the numerical solution after each of the
three stages of the Newton–Krylov method. The relative error ‖ϕe−ϕa‖/‖ϕe‖
is used, where ϕe

i is the exact solution at node i and ϕa
i is the approximate

solution at node i . Several features are apparent. First, the accuracy of the
approximate solution diminishes as the ratio Dyy/Dxx is increased. This is in
agreement with the observation that the problem is most difficult numerically
when this ratio is large. Second, the accuracy of the rbf-based methods is
much better than that offered by the method of shape functions. Third, the
inclusion of boundary information in stage three is beneficial, giving typically
an order of magnitude increase in the accuracy of the solution.

The increased accuracy offered by the rbf-based methods is not with-
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Figure 2: (a) Error after each stage. (b) Cumulative time for each stage:
1, Dyy/Dxx = 1 ; 2, Dyy/Dxx = 10 ; 3, Dyy/Dxx = 100 ; 4, Dyy/Dxx = 1000 .

Table 2: Number of elements needed and time taken for comparable accu-
racy between shape functions and rbfs

Elements Time(s)
Shape functions 5790 228

Radial basis functions 236 18
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out cost. Each iteration involving radial basis functions takes significantly
more time than those that use shape functions. Figure 2(b) compares the
cumulative time taken to reach a solution after each stage. Employing rbfs
results in a much longer execution time than when using shape functions
alone. However, a much more accurate solution is generated. Table 2 shows
the number of elements needed in the mesh for shape functions to gener-
ate a solution of comparable accuracy to radial basis functions in the case
where Dyy/Dxx = 1000 . It also shows the time taken to generate this solu-
tion. Using radial basis functions in this case allows accurate solutions to be
generated in much less time than by using shape functions alone.

7 Conclusions

The use of radial basis functions along with three-point Gaussian quadrature
in the discretisation of the finite volume method can yield accurate solu-
tions on a much coarser mesh than is possible when using shape functions.
This approach is well-suited for steady-state diffusion problems, and can be
incorporated into a Newton–Krylov method for solving nonlinear partial dif-
ferential equations. The use of the method as a corrector to the method of
shape functions is advantageous in that it allows for an accurate solution
with fewer nonlinear iterations, and for efficient preconditioning by re-using
information from the shape function-based iterations. Future research will
see this strategy tested on nonlinear and heterogeneous diffusion problems
in a three dimensional framework.

References

[1] K. Burrage and J. Erhel. On the performance of various adaptive
preconditioned gmres strategies. Numerical Linear Algebra with



References C471

Applications, 5(2):101–121, 1998.
http://citeseer.ist.psu.edu/362843.html C467

[2] B. Carpentieri, I. S. Duff, and L. Giraud. Sparse pattern selection
strategies for robust frobenius-norm minimization preconditioners in
electromagnetism. Numerical linear algebra with applications, 7:(7–8),
2000. http://citeseer.csail.mit.edu/carpentieri00sparse.html
C467

[3] R. D. Cook. Concepts and applications of finite element analysis. Wiley,
2001. C463

[4] J. F. Epperson. An Introduction to Numerical Methods and Analysis.
Wiley, 2002. C462

[5] B. Fornberg, T. A. Driscoll, G. Wright, and R. Charles. Observations on
the behavior of radial basis function approximations near boundaries.
Computers & Mathematics with Applications, 43(3-5):473–490, 2002.
URL C465

[6] P. Jayantha and I. W. Turner. A new higher order control-volume
finite-element least-squares strategy for simulating transport in highly
anisotropic media. Submitted to Journal of Computational Physics,
2002. C463
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