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Thin film models in a stochastic setting

T. Prvan® M. R. Osborne!
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Abstract

Dunn & Tichenor (1988) proposed a class of differential equation
models to describe the phenomenon of transient sink behaviour for or-
ganic emissions exhibited by interior surface films in state-of-the-art
emission test chambers. Data from a particular application is used to
exemplify the use of a model selection scheme which embeds the de-
rived models within a class of stochastic differential equations. These
embeddings have the property that the quality of model fit varies in-
versely with the strength of the stochastic forcing term. Results of
this modelling application are discussed.
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1 General form of thin fillm models

Dunn and Tichenor [1] present evidence that interior surface films in state-
of-the art emission chambers acts as a transient sink for organic emissions.
They developed a class of differential equations to model this phenomenon. It
is possible within their setting to consider four classes of models: full models,
sink models, vapour pressure models and dilution models.

Dunn and Tichenor [1] visualise a test chamber system consisting of four
compartments: the source, the well mixed chamber contents, an exit, and
a sink. The source is a film source which may be decreasing (for example,
carpet glue on an inert carrier) or constant (for example, a cake of moth
crystal). The following diagram describes the situation being considered.

ky Sink (w)
- ks T ka ka
Source (A) Chamber (r —y —w) — Exit (y)
—
ks

The initial mass emitted by the source is denoted by A; the mass emitted
to the chamber by time ¢ is denoted by = = x(t); the mass exiting the
chamber by time ¢ is denoted by y = y(t); the mass in the sink at time ¢
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TABLE 1:
Models
Full ks #0 ks #0
Sink ks#0 ks=0
Vapour pressure k3 =0 ks #0
Dilution ks=0 ks=0

C507

is denoted by w = w(t); and the concentration in the chamber at time ¢ is

C(t) = (r —y —w)/V where V is the chamber volume.

In a well mixed chamber Dunn and Tichenor [1] describe the system by

dz

P kig(x,t) — ks(z —y —w),
d

d_th = k2($_y_w)7

dw

il ks(x —y —w) — kyw.

(1)
(2)
(3)

Assuming a constant air rate F' through the chamber we have that ky = F/V |
the number of air changes in unit time. This is fixed by the experimental set
up. The full set of models possible in this setting are summarized in Table 1.

In particular, we are interested in constant source models. Here the source
acts as if it were a constant emitter for a finite period of time. For example,
the moth crystal cake has its emission rate limited by its surface area, so
effectively A = oo ; and if potential for emissions is constant during the time
period considered, then g(z,t) = 1 in equation (1).

2 Thin film models in a stochastic setting

First we briefly look at the stochastic formulation of the smoothing spline

and extend this to fit thin film models in a stochastic setting.
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2.1 Stochastic formulation of smoothing spline

Suppose that the data (t1,41),. .., (t,, ys) are given and it is assumed that
the data is decomposed as the signal plus noise model

yi = f(ti) +e, e~N00, i=1,...,n. (4)

We could use a smoothing spline to fit f(¢). A smoothing spline f is the

minimizer of
n

> s e [ (@) g

i=1 t
The resultant curve is a piecewise polynomial of degree 2m — 1 with 2m — 2
continuous derivatives.

Wahba [4] showed that a polynomial smoothing spline is the solution to
the stochastic differential equation

d™x dw
dt_m = Uﬁg ) (6)

where w(t) is a Wiener process with unit dispersion parameter, A = 1/pu,
and o(t)) = [ z(ty) 2'(t) --- ™ V(t) }T has a diffuse prior (that is,
x(t;) ~ N(0,~4%I,,) and v* — o00).

Wecker and Ansley [5] presented a stochastic formulation of a polynomial
smoothing spline using this result.

Rewrite the stochastic differential equation (6) as

d 0,1 I— d
d_;::( 01 OTl)m+O-\/Xd_jem7 (7)

and the observation equation (4) as
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2.2 Stochastic formulation of thin film models

We generalise the stochastic differential equation for smoothing splines to

dx dw

— =Mz t) +oVA—b, 9
= M+ g(t) + VA ©
where M : R™ — R™ and w(t) is a Wiener process with unit dispersion pa-
rameter. The initial conditions are the same as for the polynomial smoothing
spline and point estimates are E(h"(t) | y1,...,y,) . The corresponding ob-
servation equation is

If, when fitting this “extended” generalised smoothing spline, A tends to
be small, then the model is adequate. Note that the scale of the observation
has been factored out of A in (9).

We now obtain the state space formulation of the “extended” generalized
smoothing spline. Let X(¢,¢;) be the fundamental matrix solution of the
associated homogeneous differential equation. That is,

dX

The solution to the stochastic differential equation (9) satisfying x(t1) =
1s

x(t) = X(t,t1)x + /:X(t, s)g(s)ds + O'\/X/ttX(t, s)bili—i ds. (12)

This solution can be written in the form of a recursion as

tit1

Lir1 = Xi—l—lmi + X(tz‘_,_l, S)Q(S)dS + U\/Xui—i—l s (13)

ti
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with =, = a:(t), Xiy1 = X(tip1,t;) and u;11 = w(tiyq,t;) where w;q =
ftt_i“ X (tiy1,5)b% ds which has a N(0,Q(t;41,1;)) distribution with covari-
ance matrix

tit1
Qip1 = Qtiy1, i) = X(tiy1,5)bb" X (tir1,5)" ds.

t;

We now have the state space formulation (10) and (13). We obtain x(t|n)
and hence the point estimate h”(t|n) by

1. forward pass of the Kalman filter for state equation with forcing term
(which exists in the literature),

2. followed by a backward pass of the RTS smoother (that in the literature
still applies)

3. then an application of an interpolation smoother modified for state
equation with forcing term (this is new).

Steps 1 and 2 need only be done once for fixed \. Maximum Likelihood
Estimation (MLE) or Generalized Cross Validation (GCV) can be used to find
the smoothing parameter. For reference the recursions are given below.

Kalman Filter Initiate with 10 = 0 and S1jp = 71,

lkt1

Trre = Xpp1Trp + X (trt1,5)g(s)ds,

tr
Sevtpr = Xer1SerpXppipe + AT Qt ka1, )
dpq1 = hTSk+1\kh + 07,
Thtilk+1 = Lrtijk T+ 5k+1|khd;1<yk+1 — hTﬂ?k+1|k> )

Sk+ik = Sktijk — Sk+1|khd;i1hTSg+1|k ;
=1,...,.n—1.
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RTS Smoother Initiate with @, obtained from a forward pass of the
Kalman Filter:

T o—-1
Tkln = Tgk+ Sk\kaHSHuk(wka - wk-i—l\k) )
k=nn-—1,...,1.

Interpolation Smoother Fort,_; <t <t;:

t
zc(t|n) = X(t, ti,l)wi_l\i_l + / X(t, s)g(s)ds + A(tz, t)(a:zm — azi|,;_1) s
ti—1
where

Alti,t) = [ X tio)Sic1io1 X; + QU o) X (4, 0)7]S;

ili—1 "

Smoothness properties for our “extended” generalized smoothing spline
follow a similar argument to that found in Osborne and Prvan [2, 3].

Proposition 1 The first k derivatives of (t|n) are continuous if
b'Pi(M)"h=0, j=0,....k—1, (14)

where fori=1,2,...,

dbi—q
dt

Py(M)=1,, P(M)= —MP,_;. (15)

If M is a constant matrix, then P;(M) = (—1)"M".

For the thin film model considered we have

—ks ks ks
M = kg _kQ _k2 )
ks —ks —(ks+ kq)

and g(t) = kje; . We observe y so h = ey .
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3 Moth crystal cake example

Dunn and Tichenor [1] present results for 13 emissions tests of moth crys-
tal cakes. The chamber was cleaned between each test. They fitted the
four constant source models to each data set using nonlinear least squares
to determine the unknown parameters in the experiment, such as k;. The
parameter ks is fixed by the experiment and is the the number of air changes
per hour. They had V = 1661. The criteria they use to determine the best
model for each test is to choose the model that produces the smallest residual
sum of squares. We look at the test labeled 10.1 in more detail.

3.1 Dilution model (k3 =0, k5 = 0)

To fit the “extended” generalized smoothing spline for this particular model
we have

0 O 0
M = k2 _k2 _k2 )
0 0 —k

and

¢ ¢ (t —t;)
/t_ X(t,s)g(s) ds =k / Xt s)erds = ki | (t—t) + (e — 1)

0
Also
1 0 0
)((2(/.7 tz) — 1 o efkfg(tfti) esz(tfti) k4]i2k2 (6*k4(t*ti) o 6*k2(t*ti))
0 0 e halt=t)

The choice of h is fixed by our model, we observe y, so h = ey. It is not
difficult to show that with this choice both ky and k4 are observable. We
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still need to make a choice about b. Using Proposition 1 we have at least
one continuous derivative if b7 es = 0 which meas that b =e; or b= e; or a

linear combination of e; and e3. To have two continuous derivatives we need
that bMTh = 0. Looking at

0 ke 0 0
bM™h = [b 0 by ]| 0 —k O
|0 —ky —ks | [ O
C ok
= [ty 0 ]| O
__kz

—_

which will only equal zero if b; = by . Without loss of generality assume that
b=-e; +e3. We also need to obtain the state transition covariance matrix
Aot t;) where

t
Q(t, ;) z/ X(t,s)bb" X (t,s)" ds.
t;

A preliminary computation has been made to evaluate the Dilution Model
fitted to 1,4-Dichlorobenzene emission from moth crystal. Figure 1 shows the
fit where ky = 0.25, k; = 211, ky = 0.0802 and the smoothing parameter
chosen by maximum likelihood estimation is A = 2.7331 x 10%*. This large
smoothing parameter indicates that this model is not fitting well. We also
see this from the fit in Figure 1 because the model is tending to adapt very
precisely to the data. If the model fitted well, we would expect to see a
smooth curve going between the points of the data and we would expect the
smoothing parameter to be small.

A full study of the range of possible models is currently being undertaken.
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FI1GURE 1: Extended generalized smoothing spline fit to dilution model fitted
to 1,4-Dichlorobenzene emission from moth crystal for ky = 211, ky = 0.25,
ks = 0.0802 and A = 2.7331 x 10%.
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