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Abstract

This report details progress made in a Maths in Industry Study
Group Project. The key conclusions of the study group were that cor-
rectly choosing an appropriate rheological model, and using appropriate
data to compute the parameters of that model, is vital in recovering
the correct fluid behaviour; and that exact mathematical solutions that
exist for simplistic channel shapes can be used to approximate the flow
in more complicated geometries. The problems of accurate numerical
computation for highly non-Newtonian channel flow, as well as the
complications that arise from turbulence, were identified as important
areas of further research.
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1 Introduction

The Mathematics in Industry Study Group (misg) project The flow of non-
Newtonian fluids in open channels was provided by Bechtel Corporation.
Bechtel Corporation is a very large construction and engineering company
with significant projects in Australia. In a whole range of applications, one
important issue for the Mining & Metals branch of Bechtel is the efficient
handling and transportation of slurries. Typically these slurries are made up
of mineral waste and clay mixed with water. Of particular interest to the
present project, slurries are often transported over long distances in open
channels that operate on a very slight incline, with the flow driven by gravity.
A challenge for Bechtel is to be able to predict the flow rates in an open
channel environment for a given slurry and channel design.

In an industrial setting, there is a preference for working with dense slurries, as
the use of high volumes of water is expensive. Further, the goal of transporting
slurries over long distances is normally to store them off-site after the mine
has ceased operation. This storage is more easily handled if the slurry is
dense, as the need for large dams is reduced.

The striking property of slurries is that, provided they are not overly dilute,
they exhibit distinctly non-Newtonian behaviour; the viscosity of a slurry is
not a material constant, but instead depends on the shear rate. To characterise
the precise nature of this dependence, Bechtel routinely performs experiments
with rheometers that measure the relationship between the shear stress applied
to a specimen and the shear rate. This data is then fitted against popular
non-Newtonian models, such as the Bingham plastic model, a power-law fluid,
or a Herschel–Bulkley model. These models are then used to predict flow
behaviour in channels and elsewhere [4].

The Bingham plastic model is characterised by a yield stress. For shear
stresses below the yield stress, a Bingham plastic fluid will not flow. In the
context of open channel flow, this means that there is a region of sheared
flow adjacent to the channel wall and then a plug flow region that occupies
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Figure 1: Schematic of an open channel flow for a slurry that obeys the
Bingham plastic model. This channel has a rectangular cross-section. In the
plug region the slurry moves as a rigid body. All the shearing occurs in the
shear zone. The Cartesian coordinate system used in Section 3 is indicated;
the flow is in the z-direction.
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the remaining part of the cross-section of the channel (see Figure 1, for
example) [6, 8]. Such plug flow regions are observed in the field, which
tends to support the use of the Bingham model. Furthermore, since the
Bingham model gives rise to a well-defined interface between the sheared
region and the plug flow, it has the advantage of providing mathematical
solutions that are straightforward to interpret. On the other hand, power-
law fluids are characterised by an index. When this index is small, then a
power-law fluid will flow down an open channel with an almost-plug region.
In this case there will be no well-defined interface, and so notions like a plug
flow are more difficult to describe objectively. The Herschel–Bulkley model
is a generalisation of both the Bingham plastic model and the power-law
model. Alderman & Haldenwang [1] and Burger et al. [2] discussed these
non-Newtonian fluids in the context of open channel flows.

This technical report summarises progress made at the misg meeting in Febru-
ary 2014 at Queensland University of Technology, and includes mathematical
details. In Section 2, we present the governing equations for non-Newtonian
flow of slurries. Section 3 presents some exact mathematical solutions for
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flows in simple geometries. The sensitivity that these solutions have to exper-
imentally measured parameter values is highlighted in Section 4. Section 5
reports on some numerical and approximate solutions for more complicated
geometries, whereas Section 6 contains some approximate ideas to simplify
the analysis on such geometries using Newtonian flow. Finally, Section 7
briefly discusses and comments on turbulent flow.

2 Non-Newtonian behaviour of slurries

2.1 Simplified constitutive laws

Typically in the engineering literature, non-Newtonian flows are described by
the relationship between stress τ (Pa) and strain rate γ̇ (s−1) in an idealised
shear flow, such as that observed in a viscometer test [9]. Constitutive laws
for fluids are often described in these simple terms.

Sufficiently dense slurries appear to behave as if there is a critical yield stress,
below which the slurries do not shear. In open channel flows, the non-shearing
part is referred to as a plug, which is visible to the eye [10]. Perhaps the most
simple constitutive description that encompasses a yield stress is that of a
so-called Bingham fluid, also known as a yield stress fluid [9, 10, 11]. In this
case the constitutive law states that{

γ̇ = 0 τ < τyield,

τ = τyield + Kγ̇ τ > τyield,
(1)

where τyield (Pa) is the yield stress and K is the consistency index, also known
as the plastic viscosity (Pa s). This linear relationship between τ and γ̇ is
shown in the top-right schematic in Figure 2. In the limiting case τyield = 0,
such a fluid reduces to a classical Newtonian fluid and the consistency index K
is equivalent to the dynamic viscosity coefficient (see the top-left schematic
of Figure 2).



2 Non-Newtonian behaviour of slurries M122

Figure 2: A schematic diagram indicating four different constitutive laws for
slurries.

Newtonian

γ̇

τ
Bingham

γ̇

τ

τyield

Bi-viscous

γ̇

τ

τyield

Power-law

γ̇

τ

The model for Bingham fluids is not well suited for numerical analysis as the
surface within the slurry that defines the transition between the plug and
shear flows is not known in advance. Thus it is common for numerical solvers
to approximate the Bingham model with another, such as the bi-viscous
model [12] illustrated in the bottom left of Figure 2.

The Newtonian and Bingham models assume a linear relationship between
stress and strain-rate. Perhaps the most simple model which is not based
on such an assumption is the power-law fluid, for which the constitutive
relationship [9] is

τ = Kγ̇n, (2)

where n is a dimensionless index that characterises how non-Newtonian the
slurry is. For n > 1 the flow is shear-thickening, a regime which does not
apply for slurries. For n < 1 the flow is shear-thinning (see bottom right of
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Figure 2 for a representative shear-thinning profile), whereas for n = 1 we
recover Newtonian flow. The quantity K is again referred to as the consistency
index, but this time the dimensions are Pa sn.

A generalisation of both the Bingham and power-law fluids leads to the
Herschel–Bulkley model [9]{

γ̇ = 0 τ < τyield,

τ = τyield + Kγ̇
n τ > τyield.

(3)

The physical parameters are defined as before. When n = 1 the Herschel–
Bulkley model reduces to the Bingham model, whereas for τyield = 0 the
Herschel–Bulkley model reduces to the power-law model.

2.2 Invariant constitutive laws in three dimensions

The constitutive relationships of Section 2.1 hold only for simple flows for
which the stress and strain rate depend only on one physical direction. More
generally, we must work with a stress tensor σ, written as a sum of an
isotropic (hydrostatic) part, −pI, and a deviatoric stress tensor τ. Here p is
fluid pressure, and I is the identity tensor. In component form, this sum is

σij = −pδij + τij .

Fully three-dimensional constitutive laws for fluids relates the deviatoric stress
tensor τ with the rate of strain tensor D, which has components

Dij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
,

where u is the velocity vector. For example, incompressible Newtonian fluids
are defined by τ = 2KD or τij = 2KDij. For Bingham fluids the appropriate
relationship is [12]

Dij = 0, |Πτ|
1/2
< τyield (4)
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τij = 2

(
K+

τyield

2 |Πτ|
1/2

)
Dij |Πτ|

1/2 > τyield, (5)

where here Πτ is the second invariant of the stress tensor

Πτ =
1
2

[
τijτij − (τkk)

2
]
.

These relations imply that D and τ are symmetric tensors. We use Einstein’s
summation convention which enforces summation over repeated indices. Fi-
nally, the tensor form for a power-law fluid is [14]

τij = 2K |4ΠD|
(n−1)/2

Dij ,

where ΠD is the second invariant of the rate of strain tensor

ΠD = 1
2

[
DijDij − (Dkk)

2
]
.

These constitutive laws reduce to the equations given in Section 2.1 for simple
shearing flows.

3 Exact solutions for laminar flow

3.1 Equations of motion for simple geometries

This Section 3 is concerned with unidirectional flow down a channel which is
inclined at an angle α to the horizontal. We set up a Cartesian coordinate
system, as depicted in Figure 1, so that the z-axis points down the incline,
with the x- and y-axes pointing horizontally and normal to the base of the
channel, respectively.

In these coordinates, the equations of motions are [13]

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= −

∂p

∂xi
+
∂τij

∂xj
+ ρbi , (6)
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where x = (x,y, z), ρ is density, t is time, and bi are the body force compo-
nents. Assuming the flow is driven by gravity only, bx = 0, by = −g cosα
and bz = g sinα.

For steady flow, only the third velocity component uz is nonzero. If we assume
the flow quantities do not depend on z, then uz = uz(x,y), p = p(x,y), and
the left-hand side of (6) is zero. We are left with the single equation

0 =
∂τxz

∂x
+
∂τyz

∂y
+ ρg sinα . (7)

In general, the solution of (7) depends on the constitutive equation. However,
for two simple geometries we solve (7) for a general rheology.

The first of these simple geometries is known as sheet flow. In this case the
channel is infinitely wide, so the shear stress τxz vanishes and the velocity
depends on y only. Thus (7) reduces to

0 =
∂τyz

∂y
+ ρg sinα .

Integrating and enforcing the condition of no shear on the free surface y = 0
leads to [10]

τyz = −ρgy sinα . (8)

Let the sheet have a depth H; the solid boundary at y = −H is the channel
‘wall’, giving a wall shear stress (the stress exerted on the fluid by the wall)

τW = ρgH sinα .

This result is true regardless of the fluid type.

The second simple geometry is flow in a channel of circular cross-section of
radius R, with the slurry occupying exactly half of the cross-sectional area.
In this case it is worth changing to cylindrical polar coordinates (r, θ, z).
Assuming a zero stress (and therefore a zero velocity gradient) condition on
the free surface, the flow field is identical to that of flow in a full circular
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pipe [10]. Thus, due to rotational symmetry, the only nonzero shear stress
is τrz and the axial velocity component depends only on the r direction.
Under this simplification, (7) becomes

0 =
1

r

∂(rτrz)

∂r
+ ρg sinα ,

and the solution for the shear stress bounded at r = 0 is [10]

τrz = −1
2
ρgr sinα . (9)

Since the channel wall is located at r = R, our expression for the wall stress
becomes

τW = 1
2
ρgR sinα . (10)

Again, this result is not dependent on the constitutive relationship used.

3.2 Bingham fluid

We now write down some further exact results for a Bingham fluid [3]. First,
for sheet flow, we denote the plug depth by Hplug. From (8) we immediately
see that the plug has thickness

Hplug =
τyield

ρg sinα
. (11)

Thus we need a sufficiently deep channel so that H > Hplug, or else there will
be no flow. Rearranging, this condition states that we need

sinα >
τyield

ρgH

to initiate flow.

We drop the subscript on the only nonzero velocity component uz(y). By
substituting the Bingham law in (8) and integrating, we find

u(y) =
ρg sinα

2K
(H2 − y2) −

τyield

K
(y+H). (12)
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Note that we have enforced the no-slip condition u = 0 on y = −H.

Now turning to flow in a channel with semi-circular cross-section. Referring
to (9) and denoting the plug depth as Rplug, we find

Rplug =
2τyield

ρg sinα
. (13)

Thus for flow we need
sinα >

2τyield

ρgR
.

Now writing the velocity component by u(r) we integrate (9) to find

u(r) =
ρg sinα

4K
(R2 − r2) −

τyield

K
(R− r). (14)

Again, the no-slip condition is enforced on r = R .

3.3 Power-law fluid

Integrating (8) and (9) for a power-law fluid is reasonably straightforward.
The result for sheet flow is

u(y) =
n

1+ n

(
ρg sinα

K

)1/n (
H(1+n)/n − (−y)(1+n)/n

)
,

whereas for flow in a channel of semi-circular cross-section

u(r) =
n

1+ n

(
ρg sinα

2K

)1/n (
R(1+n)/n − r(1+n)/n

)
. (15)

For a more general cross-section, we write u = u(x,y). In this case we sub-
stitute the power-law into (7) to give the nonlinear elliptic partial differential
equation

∇ ·
(
|∇u|n−1∇u

)
= −

ρg sinα

K
(16)

in the relevant domain with u = 0 on the solid boundaries and ∂u/∂y = 0
on the free surface (which we fix to be at y = 0). The left-hand side of (16)
is known as the p-Laplacian (where, here, p = n+ 1).
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3.4 Newtonian fluid

Results for a Newtonian fluid are obtained by setting τyield = 0 in the Bingham
results in Section 3.2 or n = 1 in the power-law results in Section 3.3 to give

u(y) =
ρg sinα

2K
(H2 − y2)

for sheet flow and
u(r) =

ρg sinα

4K
(R2 − r2)

for semi-circular open channel flow. In the more general case, we must solve
the linear partial differential equation

∇2u = −
ρg sinα

K
(17)

in the cross-sectional area with u = 0 on the solid boundary of the cross-
section and ∂u/∂y = 0 on the free surface y = 0.

To take one example of more complicated geometry, consider flow down a
channel of rectangular cross-section with width 2L and depth H. In this case,
the exact solution to (17) is [5]

u =
ρg sinα

K

{
1

2
(H2 − y2)

+

∞∑
m=0

16H2(−1)m+1 cos
[
1
2
(2m+ 1)π(y/H)

]
cosh

[
1
2
(2m+ 1)π(x/H)

]
π3(2m+ 1)3 cosh

[
1
2
(2m+ 1)π(L/H)

] }
,

(18)

which holds in the domain −L 6 x 6 L, −H 6 y 6 0.
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Figure 3: Shear stress (τ) versus shear rate (γ̇) for a bauxite residue slurry.
Data shown for three concentrations: 20% (top), 30% (middle) and 40%
(bottom). Experiments performed with viscometer.

0 100 200 300 400 500
0

50

100

150

γ̇ (s−1)

τ (Pa)

4 Behaviour of exact solutions using
experimental data

4.1 Rheometer data for real slurry

During the misg meeting, the project team was given, for a particular slurry,
some data in the form of shear stress versus strain rate measurements over a
range of mixture concentrations measured by mass. The slurry was made up
of bauxite residue mixed with water. This data is presented in Figure 3 for
three concentrations (the other concentrations showed very similar trends).
We found that each set of data fitted a simple power-law extremely well, with
smaller values of the index for larger concentrations. For the data shown in
Figure 3, the indices were found to be n = 0.45 (20%kg / kg concentration),
0.16 (30%kg / kg concentration) and 0.11 (40%kg / kg concentration).

On one hand, the close fit to a power-law is a little surprising, as the Bingham
model is the most popular in industry. Indeed, the Industry Representative
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indicated that this slurry had been characterised as a Bingham fluid by fitting
a straight line through the data and measuring the slope and intercept in the
usual way. On the other hand, it is common for slurries to clearly show this
type of power-law behaviour. The tendency to use a Bingham model comes
from the obvious interpretation of the quantity τyield and its effect on plug
size, at least in simple geometries, as discussed in Section 3.1. Furthermore,
if a practitioner is able to predict the stresses that the channel flow will be
operating under, then it may be easy to simply fit a line through the data
in that regime. In the next subsection we show the importance of correctly
choosing this regime.

4.2 Sensitivity of solutions to data fitting

To compare the different rheological models we use the exact solutions for a
semi-circular channel, for both the Bingham (14) and power-law (15) fluids.
The key assumption for this geometry is that the slurry is occupying the
full channel, so the flow field depends on the radial distance only. For the
Bingham case, the exact solution provides a simple formula for the radius of
the plug region (13), which predicts that the plug radius is proportional to
the yield stress but independent of the radius of the semi-circular channel.
For the power-law case, the exact solution (15) provides a velocity profile
that exhibits near plug flow, especially for small values of the index.

We now use these results to demonstrate how fitting data to the Bingham
model requires some care. We focus on the set of data in Figure 3 correspond-
ing to 40% concentration of bauxite residue. We re-plot this data in Figure 4,
including a power law that best fits the data according to a straightforward
least-squares algorithm in Microsoft Excel. Secondly, we include a fit to the
Bingham model provided by the Industry Representative. With these physical
parameter values, we compute the exact solutions using (14) and (15), as
shown in Figure 5. The two solutions compare poorly, with the Bingham
fluid model drastically underestimating the plug speed and overestimating
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the plug radius, compared with the power law model.

A closer inspection of the fit in Figure 5 sheds light on this poor comparison.
By noting the wall stress (10) computed with these physical parameter values
is τW = ρgR sinα/2 ≈ 50Pa, we observe that the straight line ((b) in
Figure 4) appears to be taken to fit data points above τ = τW . An alternative
approach is to ignore the data above τW and draw a line that takes in the
more relevant data for the example. This line, denoted (c) on Figure 4, gives
a lower yield stress τyield and a higher consistency index K, than the previous
straight line fit. With these new values, we recompute the exact solution (14)
for the Bingham fluid. This exact solution is depicted as (c) in Figure 5, and
does closely follow the power-law solution. The conclusion is that, while this
particular slurry was clearly a power-law fluid, if a Bingham model is to be
used, data corresponding to the appropriate stress region (that is, those that
are likely to occur in the flow itself as dependent on the driving slope) must
be weighted most heavily when fitting a straight line.

5 Laminar flow in other geometries

5.1 Numerical solutions of Bingham fluids

The exact solutions mentioned in Section 3.1 apply for the special cases
of an infinitely wide open channel or a full, open channel of semi-circular
cross-section. For other cross-sectional shapes, we must resort to numerical
solutions of the governing equations. It turns out that this computational
task is more difficult than what one may first guess, for both Bingham and
power-law models.

For the Bingham model, the mathematical formulation for the problem of
steady flow down a open channel is not well defined. The main problem
is that the Bingham model does not provide information about the stress
field within the plug region. In order to make computational progress, the
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Figure 4: Experimental data for shear stress τ (Pa) vs shear rate γ̇ (s−1) for a
bauxite residue slurry, 40% concentration by mass. The data is approximated
by (a) a power law model with n = 0.11 and K = 28.6 Pa sn; (b) a Bingham
approximation with τyield = 45.5 Pa and K = .027Pa s; (c) A Bingham
approximation that ignores data for τ > 50Pa, giving τyield = 40.7 Pa and
K = 0.055Pa s. The second Bingham model (c) more accurately fits the data
at low stress rates, which are more likely to be seen in practice.
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Bingham model needs adjusting so that stresses are related to shear rates
throughout the flow. One common approach is to use the so-called bi-viscous
model, which follows the Bingham model except for small shear rates, at
which point it changes to Newtonian (Figure 2). The actual value of the shear
rate at which the transition is assumed to occur is arbitrary, and not based
on the properties of the actual slurry.

The project team produced numerical solutions for a slurry flowing steadily
down an open channel using the finite element software package ansys. For
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Figure 5: Exact solutions for the velocity for a semi-circular open channel
with R = 0.41m, ρ = 1400 kgm−3, α = 1◦, g = 9.8m s−2, for power law and
Bingham fluids with parameters calculated from fitting to data in Figure 4.
The Bingham fluid (c) with parameters estimated from data points taken at
lower shear rates is a much closer match to the power law fluid (a) than the
Bingham fluid (b) with parameters estimated from data over the entire range
of shear rates.
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example, for a particular choice of parameter values, solutions were computed
for a semi-circular channel, a rectangular channel with 2× 1 aspect ratio, and
a channel with large aspect ratio. These are shown in Figure 6 and Figure 7.

First, the solution in a semi-circular channel was used to compare the nu-
merical method with the exact solution (14). The numerical scheme actually
solves a bi-viscous model, and so the numerical solution for the semi-circular
channel is quantitatively slightly different from the exact solution. While the
results of this comparison are not shown here, we found the numerical scheme
slightly overestimates the plug radius and underestimates the plug velocity.
Away from the plug the comparison is very good.
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The numerical solutions for the rectangular channel in Figure 6 and Figure 7
highlight the role of the two different exact solutions (12) and (14). The
solution for a 2× 1 rectangular channel in Figure 6 has a near-circular plug
whose radius was similar to that for the semi-circular cross-section (13). In
this case, we chose the area of the 2× 1 rectangle to be equal to the area of
the semi-circle, and the velocity profiles are reasonably similar. As the area
of a 2× 1 rectangular channel increases beyond this value, we find the plug
becomes even more circular in shape, and the area of the plug approaches
that of the semi-circular cross-section. The solution for a very wide and thin
channel in Figure 7 has an almost one-dimensional plug, whose depth was
one half the radius of the circular plug, and therefore close to that predicted
by the exact solution for sheet flow (11). These calculations suggest a simple
model for predicting the plug size and shape for laminar flow in a rectangular
cross-section. That is, provided the depth of the channel satisfies H > 2Hplug

(where Hplug is the thickness of a plug for sheet flow, given in (11)), and
provided the channel width 2L is such that L > H, then a rough estimate for
the plug size is

Cross-sectional area of plug = 2πH2
plug

(
H

L

)
+ 2LHplug

(
1−

H

L

)2

. (19)

With this plug size, other key quantities like relative flow rates and hydraulic
radii can be straightforwardly calculated.

5.2 Approximation for a nearly-circular channel

Instead of using numerical solutions, an approximate analytic formula may
be derived for a channel cross section close to a semi-circle. Let the channel
radius be given by the formula (in polar coordinates)

r = R(0) + εR(1)(θ)

where ε is small, an approximate solution follows by linearising the equations
for stress and velocity. Denoting the leading order solution (that found in Sec-
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Figure 6: (a) A comparison between the centreline velocity profiles of nu-
merically computed solutions to Bingham fluid flow in a semi-circular and a
2× 1 rectangular channel. Numerically computed velocity profiles are in (b)
and (c). The parameters used are ρ = 2100 kgm−3, α = 10◦, g = 9.8m s−2,
τyield = 98Pa and K = 1.92Pa s. The semi-circular channel has a radius
R = 0.1m, while the 2×1 rectangular channel has a width 2L = 0.1772m and
depth H = 0.08862m (these lengths were chosen to match the cross-sectional
area of the semi-circular channel).
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Figure 7: (a) A comparison between the centreline velocity profile of the
numerically computed solution to Bingham fluid flow in a 12× 1 rectangular
channel with the exact solution for sheet flow (12). (b) The velocity profile
from the numerical solution. The parameters used are ρ = 2100 kgm−3,
α = 10◦, g = 9.8m s−2, τyield = 98Pa and K = 1.92Pa s. The 12 × 1
rectangular channel has a width 2L = 1.063m and depth H = 0.08862m.
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tion 3.2) with superscript (0), and all correction terms with the superscript (1),
the equation for motion gives

∂τ
(1)
rz

∂r
+
τ
(1)
rz

r
+

1

r

∂τ
(1)
θz

∂θ
= 0 ,

while the correction to the stress tensor now has two components,

τ(1)rz = K
∂u(1)

∂r
, τ

(1)
θz =

(
τyield

∂ru(0)
+ K

)
1

r

∂u(1)

∂θ
.

The boundary conditions on the channel wall and the plug are

u(1) = −R(1)∂u
(0)

∂r
on r = R(0), τ(1)rz = −R

(1)
plug
∂τ

(0)
rz

∂r
on r = R(0)

plug .

The corrections to the stress and constitutive equations must be combined
into a linear second order equation for the velocity correction u(1), which
turns out to be

r2
∂2u(1)

∂r2
+ r

∂u(1)

∂r
+

(
R
(0)
plug

r− R
(0)
plug

+ 1

)
∂2u(1)

∂θ2
= 0 .

Assume the perturbation to the boundary is a single Fourier mode: R(1) =
Ak coskθ, so u(1) = f(r) coskθ where f satisfies

r2f ′′ + rf ′ − k2

(
R
(0)
plug

r− R
(0)
plug

+ 1

)
f = 0 , R

(0)
plug < r < R

(0),

with boundary condition

f(R(0)) = −Ak

(
ρg sinαR(0)

2K
−
τy

K

)
.

This is a singular linear differential equation which has a general solution
in terms of hypergeometric functions F (or polynomials of degree k). The
solution that is non-singular at r = R(0)

plug is

f1(r) = 2F1

(
[k,−k], [1], r/R

(0)
plug

)
,
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and using the boundary condition at r = R(0) we obtain

f ′
(
R
(0)
plug

)
=
f(R(0))

f1(R(0))
f ′1

(
R
(0)
plug

)
= −f(R(0))

k2

R
(0)
plug

2F1 ([−k+ 1,k+ 1], [2], 1)

2F1

(
[−k,k], [1],R(0)/R

(0)
plug

)
= f(R(0))

k(−1)k

R
(0)
plug2F1

(
[−k,k], [1],R(0)/R

(0)
plug

) .

From the stress condition on the plug wall, the correction to the plug radius
is

R
(1)
plug = Ak

(
R(0)

R
(0)
plug

− 1

)
k(−1)k

2F1

(
[−k,k], [1],R(0)/R

(0)
plug

) coskθ ,

or R(1)
plug = F

(
R(0)/R

(0)
plug;k

)
R(1), where

F(X;k) = (X− 1)
k(−1)k

2F1 ([−k,k], [1],X)
.

This formula is important as it gives the effect of perturbing the wall on the
shape of the plug. Note F is a rational function for integer k; the first few are

F(X; 1) = 1 ,

F(X; 2) =
2

3X− 1
,

F(X; 3) =
3

10X2 − 8X+ 1
,

F(X; 4) =
4

35X3 − 45X2 + 15X− 1
.

In all cases F(1;k) = 1 (if the plug is on the wall, it perturbs the same as the
wall) and decreases as X increases, that is, the plug radius decreases relative
to the pipe radius. The larger the value of k, the faster the decrease occurs.
Thus the further the plug is from the wall, and the larger the mode number k
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Figure 8: Example numerical solutions in a trapezoidal channel, for (a) a
Newtonian, and (b) a power-law rheology with exponent n = 0.14.

(a)

(b)

of the perturbation, the smaller the effect of the wall on the plug. This
explains the numerical results in the previous section, as a k = 2 perturbation
(making a channel longer and thinner) has a much greater effect on the plug
shape than a k = 4 perturbation (making a channel more square).

5.3 Power-law fluids

Turning now to the numerical solutions with the power-law model, the project
team discovered that computing solutions for fluids with a low power-law
index was rather challenging. In terms of the model, the difficulties arise
from the extremely high apparent viscosities at low shear rates. Regardless,
solutions were computed (for moderate values of the power law index) for
trapezoidal shaped channels and compared to models for Newtonian fluids
(Figure 8).

6 A hybrid Bingham/Newtonian approach

An additional approach that the project team worked on was to treat the
slurry as Newtonian and then stipulate a plug region that begins where the
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shear stresses reach the yield stress. The advantage of this hybrid model is
that the flow problems for Newtonian fluids are linear and so solved exactly
by hand using traditional approaches. However, the solutions differ from the
actual flow of a Bingham fluid as the stress contours do not coincide with the
velocity contours, and so the flow cannot satisfy a no-slip condition on the
plug wall.

We include an example using the Fourier series solution (18) for the velocity
profile u(x,y) in a rectangle. A typical solution, computed from this series
solution, is shown in Figure 9(a). Using this solution, the stress at any
location is

τ = µ

[(
∂u

∂y

)2

+

(
∂u

∂z

)2
]1/2

. (20)

The stress profile corresponding to the given velocity profile is shown in
Figure 9(b). The “yield” line could be any of the contours seen in this figure,
that is, the line that represents those points with stresses greater than the
yield stress and consequently flowing like a Newtonian fluid. The lowest
stresses, as expected, are near the surface and in the centre of the channel.
However, there are also regions of lower stress in the corners of the rectangular
channel that reflect that the flow is slower in the corners due to the close
proximity of the two boundaries, which raises the possibility that stationary
plug-regions form in the corners in a true Bingham fluid flow.

Using this solution the project team estimated the flux down the channel for
different values of yield stress (and the other parameters). Let the flux of the
Newtonian flow over the entire domain be Qmax; by assuming that the flow
at any point is that of the surrounding fluid where the shear is insufficient,
we estimate the flux reduction as a function of yield stress for different
flow parameters. Figure 10 shows plots of flux ratios for different values of
κ = ReFr−2 sinα, where the Reynolds number is defined as Re = VL̂ρ/µ

and the Froude number is Fr = V/
√
gH. Here L̂ is the characteristic length

scale of the flow, taken here to be the depth of the rectangular channel. Each
line shows the reduction in flux down the rectangular channel as the yield
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Figure 9: Typical plots of (a) velocity, and (b) stress for Newtonian flow in a
rectangular channel. The stress contours could form the outer zone of the
“plug” flow caused by the yield stress. Highest stresses are near the walls in
general, with the exception of low stress regions in the corners.
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Figure 10: Flux ratio for different values of yield stress at different values of
flow value κ = ReFr−2 sinα. Flux ratio = 1 corresponds to Newtonian flow.
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stress increases for several different values of κ. Increasing values of κ can
be thought of as slightly increasing the angle of the channel. If the flow is
fast enough, then the reduction in flux is quite small even for quite large
values of the yield stress, whereas at small values of flow the effect is often
quite dramatic. In this approximation it is difficult to compute the exact
value of the “plug” velocity because the stress contours (Figure 9(b)) do not
coincide with the velocity contours (Figure 9(a)), and so the local velocity
profile is not accurate. However, the error is probably no greater than in the
approximation of the model.

As a starting model this is probably quite reasonable and it is not difficult to
compute for any cross-section shape. A more accurate representation of the
“plug” component of the flow and the shear components of the flow would need
to be incorporated to provide better comparison, but indications are that
this approach might be used to estimate downstream fluxes for a Bingham
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fluid. This work needs further attention to establish the accuracy of the
approximation and to explore how the model may provide insight into the
key issues with which Bechtel are concerned.

7 Discussion

The major outcomes of the study group were

• the importance of choosing an appropriate rheology, and determining the
rheological parameters based on experimental data in the appropriate
stress range; and

• the predictive value of the explicit solutions for semi-circular and infinite
sheet geometries.

These exact solutions can closely approximate flow in other geometries, such
as rectangular channels, which otherwise could only be computed numerically.
We have used these approximations to derive the approximate formula (19) for
the cross-sectional area of a plug region if Bingham flow is assumed. Further,
it was observed during the study group that numerical computation of highly
non-Newtonian flow (either due to yield stress, or small power law index)
presents a serious challenge. Such numerical solutions are needed to verify
the accuracy of approximate methods discussed in this report.

We close with some comments on turbulent flow. The exact and approximate
solutions presented in this technical report are based on the assumption that
the flow is laminar and unidirectional. That is, the assumption is that the
slurry is flowing straight down the channel with no chaotic mixing behaviour.
However, if the slurry is moving sufficiently quickly, then all or part of the fluid
flow may be turbulent. The project team identified that the assumption of
laminar flow sometimes produce speeds that are unrealistically high, because
the slurries operate in a low-viscosity regime once pushed beyond the yield
stress. Thus turbulent flows will frequently arise in practice.
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An aspect of the problem introduced by the Industry Representative was
to predict the parameter regime in which turbulence occurs, and to derive
formulas for the average velocity when the flow is turbulent. For Newtonian
fluids these questions are framed in terms of the dimensionless Reynolds
number and friction factor. There is no universally accepted formula for these
numbers for non-Newtonian fluids, although there are multiple candidates in
the literature.

Although the project team did not advance to the point of deriving quan-
titative results during the misg meeting itself, discussion within the team
did identify avenues of further work, particularly on the Bingham model. It
was reasoned that, even at sufficiently high speeds to induce turbulence, a
Bingham plastic would still have a large unsheared plug, with turbulent flow
restricted to a small gap between the stationary wall and the moving plug.
The Reynolds number for such a flow should therefore be based on the width
and characteristic viscosity inside the thin turbulent region. To construct a
formula for the average velocity of the flow, the velocity profile within the
thin region could be approximated using the law of the wall approximation [7]
that is used for Newtonian fluid flow. Further work is needed to derive
mathematical results from these preliminary observations.

Acknowledgements The problem moderators for this project were Scott
McCue (Queensland University of Technology), Michael Dallaston (University
of Oxford) and Graeme Hocking (Murdoch University), while the international
guest was Alistair Fitt (Oxford Brookes University). The study group that
contributed to this project included David Arnold, Kylie Foster, Luke Fullard,
Sargon Gabriel, Bennett Gardiner, Agus Yodi Gunawan, Md Hamidul Islam,
Michael Jackson, Barbara Johnston, Peter Johnston, Glen Oberman, Galyna
Safonova, Stevan Stojanovic, and Jakub Tomczyk. We are grateful to Bechtel
Corporation, in particular the industry representative Dr Robert Janssen, for
their support of the misg project.



References M145

References

[1] N. J. Alderman and R. Haldenwang, “A review of Newtonian and
non-Newtonian flow in rectangular open channels.” Hydrotransport 17:
The 17th International Conference on the Hydraulic Transport of Solids,
The Southern African Institute of Mining and Metallurgy and the BHR
Group, 2007. http://hdl.handle.net/11189/5192 M120

[2] J. Burger, R. Haldenwang and N. Alderman, “Experimental database for
non-Newtonian flow in four channel shapes.” Journal of Hydraulic
Research, 48 (2010): 363–370. doi:10.1080/00221686.2010.481849 M120

[3] P. Coussot, “Steady, laminar, flow of concentrated mud suspensions in
open channel.” Journal of Hydraulic Research, 32 (1994): 535–559.
doi:10.1080/00221686.1994.9728354 M126

[4] D. A. Rojas and R. H. A. Janssen, “Design of open channels for
non-Newtonian fluids”, in Proceedings of the 16th International Seminar
on Paste and Thickened Tailings, Eds R. J. Jewell, A. B. Fourie, J.
Caldwell and J. Pimenta, Australian Centre for Geomechanics, 2013.
M119

[5] S. W. McCue, J. R. King and D. S. Riley, “Extinction behaviour for
two-dimensional inward-solidification problems.” Proceedings of the
Royal Society of London A, 459 (2003): 977–999.
doi:10.1098/rspa.2002.1059 M128

[6] C. C. Mei and M. Yuhi, “Slow flow of a Bingham fluid in a shallow
channel of finite width.” Journal of Fluid Mechanics, 431 (2001):
135–159. doi:10.1017/S0022112000003013 M120

[7] H. Schlichting and K. Gersten, Boundary-Layer Theory. Springer-Verlag,
Berlin Heidelberg, 2000. doi:10.1007/978-3-662-52919-5 M144

http://hdl.handle.net/11189/5192
https://doi.org/10.1080/00221686.2010.481849
https://doi.org/10.1080/00221686.1994.9728354
https://doi.org/10.1098/rspa.2002.1059 
https://doi.org/10.1017/S0022112000003013
https://doi.org/10.1007/978-3-662-52919-5


References M146

[8] K. X. Whipple, “Open-channel flow of Bingham fluids: applications in
debris-flow research.” The Journal of Geology, 105 (1997): 243–262.
doi:10.1086/515916 M120

[9] R. Chhabra and J. F. Richardson, Non-Newtonian Flow: Fundamentals
and Engineering Applications, Butterworth-Heinemann, 1999. M121,
M122, M123

[10] P. Coussot, Mudflow rheology and dynamics, Balkema, 1997. M121,
M125, M126

[11] F. Holland and R. Bragg, Fluid Flow for Chemical and Process
Engineers, Butterworth-Heinemann, 1995. M121

[12] E. Mitsoulis, Flows of viscoplastic materials: models and computations,
Rheology reviews, 2007 (2007), pp. 135–178.
http://www.bsr.org.uk/rheology-reviews/RheologyReviews/
viscoplastic-materials-Mitsoulis.pdf M122, M123

[13] D. Pritchard, B. R. Duffy, and S. K. Wilson, Shallow flows of
generalised Newtonian fluids on an inclined plane, Journal of
Engineering Mathematics, 94 (2015), pp. 115–133.
doi:10.1007/s10665-014-9725-2 M124

[14] J. N. Reddy and D. K. Gartling, The finite element method in heat
transfer and fluid dynamics, CRC press, 2010. M124

Author addresses

1. Scott W. McCue, Mathematical Sciences School, Queensland
University of Technology, Brisbane QLD, Australia.
mailto:scott.mccue@qut.edu.au
orcid:0000-0001-5304-2384

https://doi.org/10.1086/515916
http://www.bsr.org.uk/rheology-reviews/RheologyReviews/viscoplastic-materials-Mitsoulis.pdf
http://www.bsr.org.uk/rheology-reviews/RheologyReviews/viscoplastic-materials-Mitsoulis.pdf
https://doi.org/10.1007/s10665-014-9725-2
mailto:scott.mccue@qut.edu.au
http://orcid.org/0000-0001-5304-2384


References M147

2. Graeme C. Hocking, Mathematics and Statistics, Murdoch
University, Perth WA, Australia.
orcid:0000-0002-5812-6015

3. Michael C. Dallaston, Mathematical Institute, University of Oxford,
Oxford, United Kingdom (Currently: Flow Measurement and Fluid
Mechanics Research Centre, Coventry University, Coventry, United
Kingdom).
orcid:0000-0001-8993-6961

4. Luke A. Fullard, Institute of Fundamental Sciences, Massey
University, Palmerston North, New Zealand.
orcid:0000-0002-9193-8664

5. Peter R. Johnston, Applied Mathematics, School of Natural
Sciences, Griffith University, Brisbane QLD, Australia.
orcid:0000-0002-8643-3901

6. Agus Y. Gunawan, Industrial and Financial Mathematics Group,
Institut Teknologi Bandung, Indonesia.
orcid:0000-0002-0564-1902

7. Alistair D. Fitt, Vice Chancellor’s Office, Oxford Brookes University,
Oxford, United Kingdom.
orcid:0000-0002-6109-7569

http://orcid.org/0000-0002-5812-6015
http://orcid.org/0000-0001-8993-6961
http://orcid.org/0000-0002-9193-8664
http://orcid.org/0000-0002-8643-3901
http://orcid.org/0000-0002-0564-1902
http://orcid.org/0000-0002-6109-7569

	Introduction
	Non-Newtonian behaviour of slurries
	Simplified constitutive laws
	Invariant constitutive laws in three dimensions

	Exact solutions for laminar flow
	Equations of motion for simple geometries
	Bingham fluid
	Power-law fluid
	Newtonian fluid

	Behaviour of exact solutions using experimental data
	Rheometer data for real slurry
	Sensitivity of solutions to data fitting

	Laminar flow in other geometries
	Numerical solutions of Bingham fluids
	Approximation for a nearly-circular channel
	Power-law fluids

	A hybrid Bingham/Newtonian approach
	Discussion
	References

