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Higher order accuracy in the gap-tooth scheme
for large-scale dynamics using microscopic

simulators

A. J. Roberts∗ I. G. Kevrekidis†
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Abstract

We are developing a framework for multiscale computation which
enables models at a “microscopic” level of description, for example
Lattice Boltzmann, Monte–Carlo or Molecular Dynamics simulators,
to perform modelling tasks at the “macroscopic” length scales of in-
terest. The plan is to use the microscopic rules restricted to small
patches of the domain, the “teeth”, followed by interpolation to es-
timate macroscopic fields in the “gaps”. The challenge begun here
is to find general boundary conditions for the patches of microscopic
simulators that appropriately connect the widely separated “teeth” to
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achieve high order accuracy over the macroscale. Here we start ex-
ploring the issues in the simplest case when the microscopic simulator
is the quintessential example of a partial differential equation. In this
case analytic solutions provide comparisons. We argue that classic
high-order interpolation provides patch boundary conditions which
achieve arbitrarily high-order consistency in the gap-tooth scheme,
and with care are numerically stable. The high-order consistency is
demonstrated on a class of linear partial differential equations in two
ways: firstly, using the dynamical systems approach of holistic dis-
cretisation; and secondly, through the eigenvalues of selected numer-
ical problems. When applied to patches of microscopic simulations
these patch boundary conditions should achieve efficient macroscale
simulation.
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1 Introduction

This research is part of a wide ranging project to create a set of compu-
tational super-structures (libraries) to wrap around whatever the best mi-
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croscopic level computer model a scientist would come up with for her/his
system [10, 9, e.g.]—be it a Monte–Carlo description of a chemical reaction
or an individual-based model in ecology or epidemiology. A persistent fea-
ture of complex systems is the emergence of macroscopic, coherent behavior
from the interactions of microscopic agents—molecules, cells, individuals in
a population—between themselves and with their environment. The impli-
cation is that macroscopic rules (description of behaviour at a large scale)
can somehow be deduced from microscopic ones (description of behavior
at a finer level). Crucially, we address how information is transformed be-
tween scales. For some problems (like Newtonian fluid mechanics) the suc-
cessful macroscopic description (the Navier–Stokes equations) predated its
microscopic derivation from kinetic theory. However, in many current prob-
lems, ranging from ecology [4, e.g.] to materials science [14, 8, e.g.], and
from chemistry to engineering [24, e.g.], the physics are known at the mi-
croscopic/individual level, but the closures required to translate them to a
high-level macroscopic description are simply not available analytically [22],
except in some simple circumstances [1]. Further, three invited speakers at
the International Congress on Industrial and Applied Mathematics in 2003
emphasised the importance of, and discussed, the sort of multiscale mod-
elling that this project addresses: Thomas Hou, Multiscale modelling and
computation of incompressible flow ; Michael Ortiz, Variational problems in
mechanics and the link between microstructure and macroscopic behaviour ;
and David L. Donoho, Geometric multiscale analysis and its applications.

Dolbow, Khaleel & Mitchell [5] report to the us Department of Energy
that

Science and technology are on the brink of a revolution. Physical
processes at exceedingly small scales of time and space are be-
coming increasingly well understood. Technologies for engineer-
ing systems at the micro and nano scales are rapidly emerging.
Yet in general we have no means of translating fundamental, de-
tailed scientific knowledge at small scales into its effects on the
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Figure 1: Gap-tooth solution of Burgers’ equation (1) on [0, 2π] through
microsimulation on 8 teeth, each of small width π/20; the teeth are coupled
by special patch boundary conditions.

macroscopic world in which we live. Without the capability to
“bridge the scales,” important scientific and engineering problems
will remain out of reach.

Subsequently the Department of Energy called for applications for research
grants to be allocated “up to [US]$5.8 million in this . . . Fiscal Year 2005”.
We aim to contribute to multiscale modelling by circumventing the lack of an-
alytic closures by our novel computational methods; just one example in our
project is the macroscale modelling of diffusion in random media [23]. Our
initial work here indicates how the gap-tooth scheme [7, 22, e.g.] may connect
microscale patches to achieve higher order accuracy in the macroscale.
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As a preliminary illustration of the gap-tooth scheme [7, 21, 22], consider
simulating the diffusion and nonlinear advection of the viscous Burgers’ equa-
tion

∂u

∂t
+ 100 u

∂u

∂x
=

∂2u

∂x2
. (1)

Suppose our aim is to simulate the evolution of fields u(x, t) periodic in x
on the macroscopic length scale 2π. See in Figure 1 the continuous time
evolution on m = 8 grid “points” in space with macroscopic spacing H =
π/4 . However, each “point” is actually a microscopic patch of width h =
π/20 . Further, the only knowledge that the macroscopic evolution has of
Burgers’ pde (1) is through the detailed simulation of the pde within each
patch [9]; here we obtain this local detailed simulation via a discretisation
of (1) on a microscopic spatial grid of n = 11 points within each patch,
∆x = 0.0175 , and on a microscopic time step of ∆t ≈ 10−4 . This fine
scale discretisation of Burgers’ pde (1) represents a finely detailed model or
particle simulation that is too expensive to use over the entire macroscopic
domain [9, 11]. Recall that the methodology is to evaluate automatically (“on
demand”) the macroscopic modelling closures which all too often are not
available explicitly [4, 22, e.g.]. Our task here is to begin to show how such
microscopic simulations in small patches of space may be coupled by patch
boundary conditions derived in Section 2 to ensure high order accuracy over
the macroscopic domain. Here we use a well understood pde only so we can
analyse explicitly all details of the transformation from microscale model,
the pde, to macroscale discretisation.

The example of Figures 1 and 2 shows us that there are two time scales
in the simulation. Rapidly, the initial internal structure within each tooth
(black curves in Figure 2) smooths by diffusion on the microscopic time-
scale to a local quasi-equilibrium (blue curves). Then, over longer times the
inter-patch coupling exchanges information between the teeth to guide how
the local quasi-equilibria evolve over macroscopic times. See the dynamics
in Figure 2: the broad hump initially centred around x ≈ 4 is nonlinearly
advected to the right to wrap around to about x ≈ 1 at the end (red curves);
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Figure 2: Gap-tooth solution of Burgers’ equation (1) on [0, 2π] on 8 teeth
each of small width π/20 and coupled by special patch boundary conditions.
Solutions u(x, t) + 4t are plotted at five times t = 0 : 0.025 : 0.1 in different
colours and connected by yellow lines and with the vertical displacement of 4t
to help distinguish the plots.

whereas the short hump initially at x ≈ 1 is dissipated quickly against the
slow moving region at x ≈ 2 . The rapid smoothing of internal structure in-
cludes the elimination of any boundary layers that might occur near the edges
of each patch—the forcing of each patch by the macroscopic grid values Uj

varies on a time scale much longer than the time scale of decay internal to
each patch, later seen explicitly in Tables 1, 2 and 3, and consequently the
structure internal to each patch is smooth.

Because of the two time scales, we plan future research to implement
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“coarse grained” integration [6] which uses just short bursts of microscopic
integration to then extrapolate over a macroscopic time step. The result
will then be a scheme where the microscopic simulations are only needed for
relatively small patches in space-time. However, here we concentrate on only
the issue of the macroscopic coupling of small patches across space.

The method of “holistic discretisation”, developed by Roberts & Macken-
zie [17, 18, 19, 13], creates discretisations on a macroscopic grid using system-
atically obtained analytic approximations for the subgrid field. The analytic
solutions of Section 3 using this method are analogous to the microscopic
system simulators in the gap-tooth scheme: they both provide microscopic
solutions which are macroscopically coupled to neighbouring elements. This
dynamical systems approach adapts the patch boundary conditions to sup-
port the modelling by centre manifold theory [18]. Then the equivalent pde
of the macroscopic dynamic model is found, in Section 3, to confirm high
order consistency for a wide class of linear pdes. Although the theoretical
support for our analytic approach here is apparently based upon dissipation
being a dominant mechanism, the approach works remarkably well for large
advection (large in comparison with diffusive dissipation). Roberts [18, §3]
found that when subgrid scale structures are solved for finite advection, in
a manner more closely analogous to the information provided by microscale
simulators, then the macroscale discretisation transforms smoothly between
high order accurate centred difference schemes with small advection to lower
order but robust upwind discretisations with very large advection.

Lastly, in Section 4, we consider a numerical time integrator for the dif-
fusion equation on patches. The eigenvalues of the integrator again confirm
the high order accuracy of the proposed patch boundary conditions.



1 Introduction C644

2 Couple the patches

In this section we develop a coupling of the internal dynamics of patches with
their neighbours to achieve high order consistency. We construct a boundary
condition for the flux on the edge of the microscopic patches that is a natural
interpolation of the surrounding macroscopic field. The number of required
boundary conditions will depend upon the microscopic simulator [12, e.g.],
and possibilities other than the flux remain to be explored. But here we
know that boundary conditions on the flux should give rise to well-posed
diffusion-like dynamics.

We introduce the notation in which we typically use capital letters for
macroscopic quantities and lower case letters for microscopic quantities. Thus
let each of m patches be centred on equi-spaced grid points x = Xj = jH
seen in Figures 1 and 2. Let each patch be of width h. Then the edge of
a patch is a distance h/2 from its grid point, a fraction r = h/(2H) to the
neighbouring grid point: when r = 1

2
the neighbouring patches meet and

there would be no gap, as in holistic discretisation [17]. Here we expect
the fraction r to be small so that the patches are a relatively small part of
the physical domain. For example, r = 1/10 in Figures 1 and 2. Now let
vj(x, t) be the microscopic field in the jth patch.

We use the following identities for discrete operators [15] on a step size
of the macroscopic grid and are careful whether we are using as a step of H
in x or a step of 1 in j. In terms of the shift operator, Ev(x, t) = v(x + H, t)
or equivalently EUj = Uj+1:

centred mean µ = 1
2
(E1/2 + E−1/2) , (2)

centred difference δ = E1/2 − E−1/2 , (3)

translate/shift E = 1 + µδ + 1
2
δ2 , (4)

derivative in x H∂x = 2 sinh−1 1
2
δ , (5)

an identity µ2 = 1 + 1
4
δ2 . (6)
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Exponents behave naturally, for examples E2Uj = E(EUj) = Uj+2 , whereas
E−1/2v(x, t) = v(x−H/2, t) , and so on. Consequently, obtain the derivative

of the microscopic field on the edge of a patch, H
∂vj

∂x
at (Xj ± rH, t), from vj

through applying the operator

E±rH∂x = (1 + µδ + 1
2
δ2)±r2 sinh−1 1

2
δ by (4) and (5)

= [1± rµδ +O
(
δ2

)
][δ +O

(
δ3

)
]

= δ ± rµδ2 +O
(
δ3

)
= µδ ± rδ2 +O

(
δ3

)
by (6). (7)

This last operator just involves evaluation at the grid points Xj and hence
is evaluated from the macroscopic grid values Uj. This provides the same
approximation for the microscopic gradient as obtained by quadratic interpo-
lation through the neighbouring macroscopic grid values [7, e.g.]. We proceed
to modify such a patch boundary condition in order to obtain higher order
consistency with the surrounding macroscopic variations.

For arbitrary order consistency, as the macroscopic grid size H → 0 or
as the macroscopic gradients become small, repeat the previous analysis but
retain more terms. Using (6) to replace µ2 terms:

E±rH∂x = (1 + µδ + 1
2
δ2)±r2 sinh−1 1

2
δ

=
µ√

1 + 1
4
δ2

(1 + µδ + 1
2
δ2)±r2 sinh−1 1

2
δ

= µδ ± rδ2 − (1
6
− 1

2
r2)µδ3 ∓ r( 1

12
− 1

6
r2)δ4

+ ( 1
30
− 1

8
r2 + 1

24
r4)µδ5 ± r( 1

90
− 1

36
r2 + 1

120
r4)δ6

− ( 1
140
− 7

240
r2 + 1

72
r4 − 1

720
r6)µδ7

∓ r( 1
560
− 7

1440
r2 + 1

480
r4 − 1

5040
r6)δ8 +O

(
δ9

)
. (8)

Numerical eigenanalysis of the diffusion equation (16) reported in Section 4
confirms the high order accuracy and stability of the resultant integration
scheme with patch boundary conditions from the above operator.
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3 Achieve high order consistency

Here we demonstrate analytically that appropriate patch boundary condi-
tions achieve high order consistency for a wide class of pdes. Recall that
these pdes represent microscopic simulators: hence it is crucial that our
patch boundary conditions (ptbcs) are accurate for general pdes so that
they will also be accurate for general microscopic dynamics whose pdes we
generally will not know. Consider the linear pde

∂u

∂t
=

∂2u

∂x2
− c

∂u

∂x
− b

∂3u

∂x3
− a

∂4u

∂x4
, (9)

for some constants a, b and c—we have chosen time and space scales so
that the coefficient of the diffusion term is 1. Specially crafted boundary
conditions on small patches ensures macroscopic consistency.

Following the dynamical systems approach of holistic discretisation [17,
18] we introduce the parameter γ to control the coupling between patches:
when γ = 0 the patches are uncoupled to provide a base for us to apply
centre manifold theory; but when we subsequently set γ = 1 we recover a
dynamical model for the original pde. Modify the operator (8) to invoke
the ptbc that on x = Xj (noting that the E±r implies the left-hand side is
evaluated on the edge of the patch at x = Xj ± rH):

E±rH∂xvj =
{
γ

[
µδ ± rδ2

]
+ γ2

[
−(1

6
− 1

2
r2)µδ3 ∓ r( 1

12
− 1

6
r2)δ4

]
+ γ3

[
+( 1

30
− 1

8
r2 + 1

24
r4)µδ5 ± r( 1

90
− 1

36
r2 + 1

120
r4)δ6

]
+ γ4

[
−( 1

140
− 7

240
r2 + 1

72
r4 − 1

720
r6)µδ7

∓ r( 1
560
− 7

1440
r2 + 1

480
r4 − 1

5040
r6)δ8

]}
Uj . (10)

Neglecting the O
(
γ4

)
terms, this ptbc was implemented for the simulation

in Figures 1 and 2. See in these ptbcs that when γ = 0 the small patches are
decoupled and the resulting insulating boundary conditions, E±r∂xvj = 0 ,
cause the dissipative dynamics of (9) in each patch to decay exponentially
quickly to some constant field in each patch, namely vj(x, t) → Uj for each of
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the m patches.1 For non-zero coupling parameter γ the subgrid scale patch
field is no longer constant, and each patch grid value Uj evolves because of the
coupling with its neighbours. We construct a series solution of the pde (9)
in the coupling parameter γ: the first order expression for the microscopic
subgrid scale field is straightforward, namely

vj = Uj +γ
(
ξµδ + 1

2
ξ2δ2

)
Uj + cγH

(
−1

2
r2ξ + 1

6
ξ3

)
δ2Uj +O

(
γ2, a2 + b2 + c2

)
,

(11)
where the microscopic variable ξ = (x−Xj)/H ranges over |ξ| < r ; accom-
panying these subgrid fields the grid values Uj evolve according to standard
second order discretisation (upon putting γ = 1)

U̇j = γ

(
1

H2
δ2Uj −

c

H
µδUj

)
+O

(
γ2, a2 + b2 + c2

)
. (12)

See that the powers of the coupling parameter γ in the ptbc (10) are chosen
so that discarding terms of O

(
γp

)
results in a discrete model, such as (12),

which is of width 2p− 1 in the grid values Uj; for example, the above model
only involves Uj and Uj±1 . Centre manifold theory [2, 3, e.g.] asserts that for
small enough γ all neighbouring solutions are exponentially quickly attracted
to the resultant model which faithfully describes the dynamics of the system.
Although no proof is yet available, we anticipate that the case of interest,
when γ = 1 , is small enough for this novel theoretical support to still hold.

In the interim we demonstrate high order consistency. We obtain models
that resolve more detail of the subgrid microscopic dynamics and its inter-
action with neighbouring patches by determining higher order terms in the

1Why are we only using one pair of boundary conditions for the apparently fourth
order pde (9)? One answer is that the pde may be viewed as an equivalent pde for
a microscopic simulator that only requires one pair of boundary conditions. For exam-
ple, if the microscopic simulator is simply a fine scale discretisation of a pde, such as
ut = −c(δ/h)u + (δ2/h2)u , then only one pair of boundary conditions are needed for the
simulator, but it has a high order equivalent pde such as (9). Another answer is that there
is no physical boundary at the edge of a patch and so we only need resolve smooth subgrid
fields. For smooth solutions we need only treat the higher order terms as perturbations;
see that our error terms are expressed as O

(
a2 + b2 + c2

)
for this reason.
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coupling parameter γ. Iteration [16] straightforwardly generates higher or-
der approximations using computer algebra [20]. For example, discarding
terms O

(
γ3

)
the subgrid field in each patch is modified from (11) to

vj =

{
1 + γ

[
ξµδ + 1

2
ξ2δ2

]
+ γ2

[
1
6
(ξ3 − ξ)µδ3 + 1

24
(ξ2 − ξ4)δ4

]
+ cH

[
(γ − γ2)1

6
ξ3δ2 + γ2( 1

60
ξ5 − 1

18
ξ3)δ4

]
+

b

H
γ2 1

6
ξ3δ4

+ r2

[
−cH(γ − γ2)1

2
ξδ2 − cHγ2( 1

12
ξ3 − 1

6
ξ)δ4 − b

H
γ2 1

2
ξδ4

]
+ r4cH 1

6
ξδ4

}
Uj +O

(
γ3, a2 + b2 + c2

)
. (13)

The first line in (13) contains the leading few terms in a universal subgrid
structure for symmetric operators. However, odd operators, such as the
advection c∂u

∂x
and the dispersion b∂3u

∂x3 , generate nontrivial subgrid structures
in each patch, such as those in the second line of (13), which reflect subgrid
scale interaction of processes. The third and fourth line of the approximate
field (13) depend upon the patch size r = h/(2H) . But physically the
subgrid scale field in each patch should be independent of the patch size r.
Although there is some dependence in these approximations, higher orders
in the coupling parameter γ remove it. For example, at the beginning of
the third line in (13) see the term −cH(γ − γ2)1

2
ξδ2 disappears when we

set γ = 1 for the physically relevant approximation. Similarly, computing
the next order terms in coupling parameter γ generates terms, in γ3, which
cancel the r dependent terms in the third and fourth line of the subgrid
field (13). Thus higher order models push any undesirable r dependence to
higher orders, thereby usefully predicting a subgrid field largely independent
of the patch size r.

Simultaneously with the derivation of the subgrid field (13) we determine
the corresponding evolution of the macroscopic grid values Uj for the pde (9).
Computing to higher order in the coupling parameter γ produces refinements
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to the basic discretisation (12); for example, here we discard terms O
(
γ4

)
to

determine

U̇j =
1

H2

(
γδ2 − 1

12
γ2δ4 + 1

90
γ3δ6

)
Uj −

c

H

(
γµδ − 1

6
γ2µδ3 + 1

30
γ3µδ5

)
Uj

− b

H3

(
γ2µδ3 − 1

4
γ3µδ5

)
Uj −

a

H4

(
γ2δ4 − 1

6
γ3δ6

)
Uj

+O
(
γ4, a2 + b2 + c2

)
. (14)

Set γ = 1 to recover a model for the pde (9) supported by centre manifold
theory. Note how truncating the expansion to different powers of coupling
parameter γ changes the width in Uj of the discrete model. With the patch
boundary conditions (10) the model is independent of the patch size r.

As well as the novel dynamical systems support of exponentially quick
attractiveness and long term fidelity at finite grid size H, as mentioned ear-
lier, another way to assess the model’s relevance is to compare the original
pde with the equivalent pde obtained from model (14) in the limit as the
macroscopic spacing H → 0 . From (14), straightforward algebra, see our
reduce code [20], deduces the equivalent pde

∂U

∂t
= γ

∂2U

∂x2
− γc

∂U

∂x
− γ2b

∂3U

∂x3
− γ2a

∂4U

∂x4

+ H2

[
(γ − γ2)

(
1
12

∂4U

∂x4
− 1

6
c
∂3U

∂x3

)
− (γ2 − γ3)

(
1
4
b
∂5U

∂x5
+ 1

6
a
∂6U

∂x6

)]
+ H4

[
( 1

360
γ − 1

72
γ2 + 1

90
γ3)

(
∂6U

∂x6
− 3c

∂5U

∂x5

)
− ( 1

80
γ2 − 1

24
γ3)

(
b
∂7U

∂x7
+ 2a

∂8U

∂x8

)]
+O

(
H6, γ4, a2 + b2 + c2

)
. (15)

When the coupling parameter γ = 1 the second and third lines in the equiv-
alent pde (15) disappear and consequently the diffusion and advection is
modelled with errors of O

(
H6

)
, whereas the dispersion and the fourth-order

dissipation is modelled with errors O
(
H4

)
. Should you truncate the discreti-

sation (14) to lower orders in coupling parameter γ, there is less cancellation
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in the equivalent pde and the errors are consequently larger. Conversely, the
errors move to progressively higher orders as more terms in the coupling pa-
rameter γ are retained in the centre manifold discretisation (14). Our patch
boundary conditions (10) create excellent discretisations for quite general
pdes and hence should perform well for other microscale simulators.

4 The diffusive model is numerically stable

Although the ptbcs (10) form consistent models we need to confirm they
are numerically stable. Indeed many other forms of ptbcs were tried before
finding one that was both consistent and numerically stable. In this section
we explore the gap-tooth simulations of the simple diffusion equation

∂u

∂t
=

∂2u

∂x2
, and 2π-periodic in x. (16)

Imagine we only have access to the dynamics through a microscopic simulator
of the diffusion (16), here coded by a fine discretisation on n grid points in
a patch of microscopic size h = rH and with some microscopic time step,
typically ∆t = 10−6–10−4.

Firstly we implement the ptbc that on the edge of each patch the fine
discretisation has boundary condition[

µδ ± rδ2 − (1
6
− 1

2
r2)µδ3 ∓ r( 1

12
− 1

6
r2)δ4

]
Uj = H∂xvj at x = Xj ± rH .

(17)
Obtain this from the first few terms of (8) or equivalently from ptbc (10)
by discarding O

(
γ3

)
terms. Consider how this ptbc would be implemented

in a microscopic particle simulation. Crucially it does not refer to individ-
ual particles but to the local estimate of the continuum gradient. Certainly,
insulating boundary conditions may be implemented simply by reflecting
outgoing particles, but in general more subtle treatments of the microscopic
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Table 1: Growth rates λ of perturbations from steady state u = 0 : for
diffusion (16) with m patches; with gap to patch ratio r = 0.1 ; n = 11
points in the microscale grid; and with the fourth order ptbc (17).

m 1 2,3 4,5 6,7 m + 1 : 2m
4 2× 10−12 −0.946817 −2.170942 n/a −99.79
8 5× 10−12 −0.996139 −3.787268 −7.132829 −399.1

16 2× 10−10 −0.999758 −3.984556 −8.834269 −1596.
32 −2× 10−10 −0.999987 −3.999031 −8.988851 −6386.

system near the boundary are needed depending upon the particle dynam-
ics and the nature of the boundary condition. For example, specified value
ptbcs will involve actions depending upon the local averages estimating the
local field value. Here we are supposing that the microscopic simulator natu-
rally implements boundary conditions of specified gradient, and so we discuss
ptbcs in the form (17). More general forms of ptbcs will be explored in fu-
ture research. One aim in our project is to provide analytic support for a
wide range of microsimulator boundary conditions depending upon what is
natural for the available particle simulator.

For the jth patch this ptbc involves macroscopic grid values Uj−2, . . . , Uj+2

only. Then systematically perturbing each and every microscopic value from
zero, there are mn such microscopic values, we numerically determined the
map of one microscopic time step.2 Transform the eigenvalues µ of this map
to growth rates λ = log(µ)/∆t . The mn growth rates fall into n groups
of m modes. Each group corresponds to a microscopic internal mode of
the dynamics, roughly exp(λ`t) cos[`π(x − Xj + h/2)/h] for growth rate
λ` ≈ −`2π2/h2 for ` = 0, 1, . . . , n − 1 . For ` ≥ 1 these are the rapidly
decaying microscopic modes internal to each patch seen in the initial in-
stants of the simulations of Figures 1 and 2. The other group of m modes,

2In general, the dominant eigenvalues of the time-stepper map may be obtained via
a matrix-free Krylov subspace iteration [21]. Thus for particle simulations we do not
necessarily need access to all the fine details of the microscale.
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Table 2: Growth rates of perturbations from steady state u = 0 as for
Table 1 but fewer points in the fine grid, namely n = 7 .

m 1 2,3 4,5 6,7 m + 1 : 2m
4 8× 10−13 −0.947206 −2.173003 n/a −99.30
8 −8× 10−12 −0.996246 −3.788826 −7.138379 −397.2

16 −1× 10−11 −0.999785 −3.984985 −8.836383 −1588.
32 8× 10−11 −0.999994 −3.999139 −8.989397 −6355.

` = 0 , with small growth rates, correspond to the relatively slowly evolv-
ing macroscopic modes of interest that arise through the coupling between
patches of the microscopic dynamics. Table 1 shows the leading seven growth
rates, and the magnitude of the ` = 1 internal growth rates, for various num-
bers of patches, m = 4, 8, 16, 32 . The exact growth rates of the diffusion
pde (16) are λ = −k2 for integer k. See in the table that as the number of
patches double, the accuracy of the growth rates of the macroscopic modes
improves by a factor of about 16. This is consistent with an O

(
H4

)
method

as predicted for diffusion with ptbc (17).

Second, we repeat the analysis for fewer subgrid points so that the micro-
scopic dynamics are not resolved as well. Table 2 shows the leading eigenval-
ues for n = 7 points in each patch. There is no significant difference between
Tables 1 and 2 indicating that the microscopic resolution, the only difference
between the two, has little impact on the macroscopic dynamics. No growth
rate is significantly positive showing the numerical method is stable—the
leading growth rate is close to zero corresponding to conservation of mate-
rial. The other dominant growth rates rapidly approach those for diffusion.

Lastly, consider the diffusive dynamics of (16) when connected by the
ptbc that at x = Xj ± rH

H∂xvj =
[
µδ ± rδ2 − (1

6
− 1

2
r2)µδ3 ∓ r( 1

12
− 1

6
r2)δ4

+ ( 1
30
− 1

8
r2 + 1

24
r4)µδ5 ± r( 1

90
− 1

36
r2 + 1

120
r4)δ6

]
Uj . (18)

Obtain this ptbc from the first six terms of (8) or equivalently from ptbc (10)
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Table 3: Growth rates of perturbations from steady state u = 0 as for
Table 1 but with the sixth order ptbc (18).

m 1 2,3 4,5 6,7 m + 1 : 2m
4 8× 10−12 −0.982238 −2.457648 n/a −99.79
8 4× 10−11 −0.999677 −3.928952 −7.843254 −399.1

16 4× 10−11 −1.000006 −3.998708 −8.967122 −1596.
32 −2× 10−10 −1.000003 −4.000023 −8.999625 −6386.

by discarding O
(
γ4

)
terms. Table 3 demonstrates that the resultant numer-

ical scheme is stable and has sixth order consistency for the diffusion equa-
tion. Further, it is these ptbcs we used to simulate the nonlinear dynamics
of Burgers’ equation (1) to create Figures 1 and 2.

5 Conclusion

We achieve higher order accuracy in the gap-tooth scheme using carefully
crafted patch boundary conditions (ptbcs). Analytic approximations and
analysis of numerical steps in time confirm the ptbcs (17) and (18) are effec-
tive. Importantly, the ptbcs (17) and (18) do not depend upon the particular
pde being simulated, thus the ptbcs should work effectively for particle sim-
ulations for which we do not have an algebraic microscale closure.

Further, although the predicted microscopic subgrid scale fields do have
some dependence upon the patch size r, the dependence weakens, by being
pushed to higher orders in r, in using higher order accuracy patch boundary
conditions.

As shown in Figures 1 and 2, the ptbcs we recommend here appear to
work well even for the nonlinear dynamics of Burgers equation (1).

The research reported here is a crucial part of our project to establish
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some currently missing, crucial synergism between “conventional” numerical
analysis on the one hand, and microscopic complex systems modeling on the
other: bridging systematically the enormous gap between the microscopic de-
scription of a complex physical/material system and system-level simulation
and analysis of direct systems/engineering importance.

Acknowledgment: I. G. K. is supported in part by darpa and an nsf/
itr grant.
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