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Problem of close eigenvalues in the vibration
testing of structures

V. Gershkovich∗ N. Haritos∗

(Received 25 October 2004, revised 8 June 2005)

Abstract

We outline our vibration based testing approach towards recon-
struction of structural properties and damage detection of large struc-
tures. Our emphasis is on developing algorithms for the detection of
close or coinciding eigenvalues and their calculation — a commonly
encountered situation that has not been adequately addressed in the
modal analysis literature nor in commercial software.
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1 Introduction

Small vibration can be used to determine structural integrity or the pres-
ence of damage in many fields: aerospace, automotive, civil and mechanical
engineering, rotating machinery, medicine, to list just a few [6, 13, e.g.].
Mathematically this is considered to be an inverse problem: reconstruction
of coefficients of the wave equation on the basis of measurement of its ini-
tial eigenfunctions [5]. Both the mathematical approach adopted and the
engineering techniques applied (structure excitation and measurement) vary
strongly from field to field. In some fields, like rotating machinery, the prob-
lems and methods are simpler, and the situation far more satisfactory [13].
In other fields the problems are more difficult and satisfactory solutions have
yet to be achieved.

Our paper relates to one of the “difficult” fields — health monitoring of
bridges via experimental modal analysis [8]. The practical importance of the
problem is due to safety considerations and that properly developed theory
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and software can result in large savings in the maintenance of a nation’s
multi-billion dollar road bridge infrastructure asset.

Measurement difficulties arise due to ambient weather conditions, which
can affect results. The large size of bridge structures leads to rather extensive
experiments that must be well planned in advance to decrease as much as
possible the costs of performing them and those associated with closing the
bridge to traffic during data acquisition [2].

The problem of close eigenvalues is vital to all steps of damage detection
and reconstruction of structural properties. Despite this, there appears to be
no investigation of this problem in the literature, and none of the commercial
packages adequately deals with it.

Our experience with the practical implementation of these techniques is
in the monitoring of structural integrity of road bridges. Close eigenvalues
have created problems on a number of occasions, thus motivating the research
presented herein. We discuss broad ranging aspects of the problems encoun-
tered for closely spaced natural frequencies, develop the necessary elements
of the theory and describe numerical methods for their solution.

We consider a scheme in which the excitation force f0 sin ωt is applied at a
single point on the spatial grid of measurement points (in practice a 10 tonne
linear hydraulic shaker is used for excitation in bridge applications) with
ω changing inside a range of frequencies Ω = [ωmin, ωmax] . Accelerometers
are used for measurement at chosen grid points on the bridge surface from
which we calculate bridge displacement under vibration. The scheme consists
of two steps: the first step is reconstruction of eigenvalues and eigenfunctions,
the second is reconstruction of structural properties and damage detection.

When all natural frequencies are well separated both steps are far simpler
to tackle. In the case of closely spaced frequencies it may be possible to miss
one of a pair of close natural frequencies and obtain a quasi-mode (linear
combination of modes corresponding to close eigenvalues), instead of the
actual modes [1, 10]. Consequently, significant damage may erroneously be
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inferred at the second stage.

We have recently developed algorithms and a software package that effec-
tively detects close or even coincident natural frequencies, when damping val-
ues are essentially different. This in turn has allowed us to use perturbation
theory to detect and calculate coinciding eigenvalues and their corresponding
vector space of eigenmodes.

The advances we have made significantly enhance our ability to perform
modal identification studies on vibration data from road bridges for the pur-
pose of structural health monitoring.

2 Discrete model

The linear discrete model for small vibration of a structure, MẌ + CẊ +
KX = f , is a spatial discretization of the linear wave equation[

d2/dt2 − L
]
Y = f , (1)

L is a linear elliptic operator, close to a self adjoint operator, and Y is the
displacement. In the discrete model, X is the vector of displacements at
a properly chosen grid of points on the structure, M , C and K are n × n
matrices respectively of mass, damping and stiffness, and f(t) = f0e

iωt is an
excitation force applied at a point on this grid.

The eigenvalues of (1) form n complex conjugate pairs {λj = αj+iβj, λ̄j =
αj−iβj}n

j=1 , where βj is the jth natural frequency of (1), αj < 0 , and −αj �
βj relates to the damping of the corresponding mode. We produced [2, 3, 4]
an algorithm and the corresponding software which allows us to find λj,
j = 1, . . . , n, with a proper tolerance, and then to calculate the corresponding
modes in the case of essentially separated natural frequencies.

Our method combines the nonlinear least square method with the New-
ton method and exploits the fact that elements of the matrix H(ω) =
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(−Mω2 + iωC + K)−1 are linear combinations of the fractions (iω − λj)
−1,

(iω− λ̄j)
−1, j = 1, . . . , n where H(ω) = {hi,j(ω)} is the transfer matrix. The

coefficients of these linear combination’s determine the eigenvectors of (1).
To avoid technical details in the discussion to follow, we consider only one of
the elements of the transfer matrix and denote this element simply by h(ω).
(In practice we use several such functions simultaneously in our calcula-
tions to obtain more precise results [4]). To simplify formulas we denote
frac(c, λ, ω) = c(iω− λ)−1 + c̄(iω− λ̄)−1 and fracj(ω) = frac(cj, λj, ω). For a
simple spectrum, one has an approximation h(ω) ≈

∑n
s=1 fracs(ω) [5].

3 Separated natural frequencies

As a result of measurement we obtain a function h̃(ω) = h(ω) + δ(ω) ; δ is
due to measurement errors, “noise”, slight non-linearities of the real pro-
cess, etc. Denote C = {c1, . . . , cn}, Λ = {λ1, . . . , λn}. We define an error
function Err(Λ, C, ω) = h(ω) −

∑n
s=1 frac(cs, λs, ω), denote its L2

Ω-norm as
Err2(C, Λ) and its L∞Ω -norm as Err∞(C, Λ). We define Cmin(Λ) by the con-
dition Err2 (Λ, Cmin ) = minC Err2(Λ, C), Err2(Λ) = Err (Λ, Cmin(Λ)), Λmin by
the condition Err2 (Λmin) = minΛ Err2(Λ), and Err2 = Err2 (Λmin).

The scheme for calculation was discussed in our previous papers. We
summarise it briefly and provide references to further detail.

1. We use multiple measurements and filter the data to decrease δ and
provide convergence of the Newton method and existence of a unique
global minimum Λmin.

2. The function ‖h‖ provides an initial approximation Λ0 for Λmin. When
all natural frequencies β1 < β2 < · · · < βn are well separated, the
fraction ‖h(ω)‖ ≈

∥∥cj (iω − λj)
−1

∥∥ near βj; ‖h‖ possesses sharp local
maxima near each of the natural frequencies βj, see Figure 1. One
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can also obtain an initial approximation to αj using ‖h (βj)‖ ≈ ‖cjαj‖,
and ‖h(βj ± αj)‖ ≈ ‖h (βj)‖ /

√
2 . These approximations appear to be

precise enough to provide convergence in the Newton method.

3. To obtain Λmin we use the Newton method (in fact we have to use a
non-homogeneous measure on Ω in the definition of the L2-norm and
vary this measure in the calculation process) [4].

4. On each step of the Newton method we calculate Err2(Λ) and its partial
derivatives ∂Err2(Λ)/∂λk using the least square method [4].

5. We use Λmin as an approximation to the eigenvalues and use it together
with Cmin to calculate the eigenvectors — this can be done under rea-
sonable assumptions on damping matrix C. The reader can find precise
formulations and explicit formulas in [3].

6. This leads to reconstruction of matrices C and K in the discrete model.
(The matrix M does not change essentially for bridges with any real
crack development and can easily be accurately estimated). These ma-
trices well approximate coefficients of the wave equation under condi-
tions of proper measurement planning based on an initial finite element
model of the bridge. It involves making a number of decisions:

The choices for the number of natural frequencies to be considered
and the frequency range interval Ω must provide a sufficient number
of eigenfunctions to reconstruct the wave equation. (The model situ-
ation is reconstruction of the Riemannian metric from several initial
eigenfunctions of the Laplacian). Discussion can be found in [5].

The choice of the grid of points for performing response measurements
in the structure and the position(s) of the excitation device must pro-
vide sufficiently large norms for all nominators ck (to avoid missing
a natural frequency in the calculations). Further detail can be found
in [2, 5].
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4 Close natural frequencies

Small vibration of the structure is described by a fourth order elliptic opera-
tor L. Let us fix a small positive ε and denote by Nx,ε the number of natural
frequencies of L between x and x + ε . The Weyl formula [12, e.g.] gives for
large x: Nx,ε ∼ Vol x ε � 0 , where Vol is the volume of structure, under
mild assumptions on the structure. Then only a few initial frequencies can
be well separated. (The distribution of initial natural frequencies strongly
depends on subtle properties of the structure [11]).

When two natural frequencies are very close that is =λj ≈ =λj+1 , the
corresponding local maxima of ‖h‖ are glued together, see Figure 1. Our
strategy is based on the fact that even for very close but different natural
frequencies the sum of two corresponding fractions cannot be well approx-
imated by one fraction. What is essential is that these two cases can be
distinguished in the presence of noise and measurement errors provided by
modern equipment, (under proper measurement procedures described in the
previous section and with well developed software). Moreover even for coin-
ciding natural frequencies but essentially different damping, <λj and <λj+1,
double natural frequencies can be detected and both eigenvalues can be cal-
culated.

When we suspect double eigenvalues we check the hypothesis that there
exists a unique natural frequency near βj = =λj , using the calculation de-
scribed in the previous section. If Err2 exceeds significantly the upper bound
of possible energy attributed to noise plus modelling errors, we reject the
hypothesis. Then we add one more fraction with natural frequency near βj

and find the best approximation with an extra fraction (we skip technical
details).

Denote by Ẽrr2, Ẽrr∞ the errors for the best approximation with an extra
fraction. Estimates and numerical experiments show that when a fraction
is actually missed, the Ẽrr2 is many times smaller than Err2 and Ẽrr∞ is
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Figure 1: Norm of transfer function ‖h(ω)‖

typically tens of times smaller than Err∞.

We have applied our software for the detection of close natural frequencies
to the following example.

5 Example — close natural frequencies

We have generated the function h(ω) =
∑6

k=1 frack(ω) + Υ , where Υ is
normally distributed random noise with amplitude up to 3% of h(ω), as
would typically occur from good quality experimental measurement. We
chose artificial but realistic data corresponding closely to the measurement
conditions of a real bridge: C = (−1.5+1.5i, 3.05−1.75i, 3,−2.1+2.4i, 2.1+
2.4i, −3.7 + 3.9i) and Λ = (−0.38 + 18i, −0.46 + 49.5i, −0.6 + 76i, −0.45 +
78i, −0.45+119i, −1.2+171i). The function ‖h(ω)‖ is presented in Figure 1.
The third and fourth natural frequencies are close and the corresponding local
maxima of |h| are virtually glued together.

We used our software to reconstruct natural frequencies only from knowl-
edge of h. Our hypothesis that there exists only one natural frequency near
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Figure 2: Norm of error ‖Err(Cmin, Λmin, ω)‖ for the best approximation
of h(ω) when one of the close natural frequencies is missed

ω = 77 . We construct the best possible approximation to h by the sum
of five fractions h(ω) ≈

∑5
k=1 frac(ck, λk, ω) with natural frequencies deter-

mined by the five local maxima of ‖h‖. Figure 2 represents a plot of the norm
of the error function evaluated using optimization with one fraction missed.
The error Err(Cmin, Λmin, ω) in such an optimal approximation exceeds many
times the noise level. This result indicates that the conjecture is wrong and
that there must exist at least two close natural frequencies near ω = 77 .

Figure 3 depicts a plot of the error norms after exercising our approach
using the correct number of eigenvalues. It is clear that the detection of the
closely spaced modes has vastly decreased the error function.

Our software works well even in the case of coinciding natural frequencies
if the real parts of the corresponding eigenvalues are essentially different.
The case of identically coinciding eigenvalues requires additional effort.
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Figure 3: Norm of error of the best approximation of h(ω) when all fractions
present

6 Separation of coinciding eigenvalues

To detect (almost) coinciding eigenvalues λj ≈ λj+1 , one can physically
“perturb” the structure to separate them. We need a perturbation δL with a
‖δλj‖ � ‖δλj+1‖ . A simple and rather inexpensive option is to use a heavy
concrete block with a small base (on a cart) easily transportable to any point
on the bridge.

Let us make a simple calculation. Let {λj + δλj} be the spectrum of
L + δL , and {fj + δfj} be the set of its eigenfunctions. One can assume
that eigenfunctions are orthogonal (but not normalized) and 〈fj, δfj〉 = 0 for
all j. We have δλk = 〈(δL)fk, fk〉 [9]. When our block is over point x of the
bridge, we have δλk =

∫
B
(δL)fkf̄k db ≈ fk(x) ∗

∫
B

δL db where B is the block
base and db is the corresponding measure.

If we chose a point x such that fj has a local extremum near x and
fj+1 ≈ 0 , then |δλj| � |δλj+1| . Note that it is sufficient to take a point x
with high accelerometer response when the excitation force has frequency
ω = βj . Let Q be the space of quasimodes generated by fj and fj+1. Then
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there exists a function f ∈ Q such that |f(x)| � 0 . (We take function g
orthogonal to f in Q and apply an orthogonal transformation to obtain
fj and fj+1 with the required properties).

The function fj+1 is very close to the space of quasimodes Q. To obtain
a good approximation for the second function we can halve the block mass
and take fj = 2f

m/2
j − fm

j , where fm
j is the perturbation of fj with mass m.

Such a procedure leads to an additional measurement, which can easily be
exercised in practice as it does not require (expensive and time consuming)
relocation of the shaker. But it is hard to predict “perturbation points” in
advance unless one obtains mathematical results related to the “collective
behavior” of eigenfunctions. In particular, one has to describe the possible
structure of nodal lines and local extrema for a pair of eigenfunctions. Not
much is known on this and related topics even for the Laplacians, however
see [7, 11].

7 Damage detection

Damage detection is a fast emerging research field with several concepts and
approaches towards its solution to be found in the literature. Two schemes
are possible for bridges depending upon whether a single set of measure-
ments is available or multiple sets from periodic testing so that changes can
be investigated. Here we present only a brief description related to the latter
scheme. Detailed exposition will be the subject of separate publication(s).
Intense local damage (such as a crack) leads to strong but local perturba-
tions of (some) of the eigenfunctions. More precisely if we have a strong
crack located in a small area Bx near an essential local maximum x of an
eigenfunction f then perturbation δf is essential at points of Bx and much
smaller (but non-zero) outside Bx. Perturbation δf is much smaller if a crack
is near a “nodal point”, that is ‖f(x)‖ ≈ 0 , (compare previous section).
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Note that in the case of coinciding eigenvalues a crack would more strongly
affect just one of the eigenvalues and the corresponding eigenfunctions in the
crack area. This property allows us to detect a crack even in the case of
coinciding eigenvalues.

8 Concluding Remarks

Experimental Program. An industrial software package for structural
health monitoring must be very reliable and provide correct answers. The
first stage of validation of such software is to check “inside” the chosen model.
The example we present in this paper is part of such a check. The next step
is verification and estimates of the precision of the model and study of non-
linear effects (for example, non-linear boundary conditions due to cracks).

Such a study can be performed only on the basis of well controlled ex-
periments — measurement of structures with known cracks. So far only a
small number of such measurements has been performed using data from
either bridges before their replacement and/or rather simple artificial struc-
tures [13, e.g.].

One has to create either a test structure or bridge model which facilitates
introduction of temporary “damage” at a given location and of a given ex-
tent and intensity. Ideally one should be able to create additional general
structure degradation as well as imitate changing weather conditions (for
example, strict non-homogeneous temperature change and strong wind).

The substantial potential savings that would result from reliable health
monitoring of bridges would justify such an experimental program.

Other Applications. Methods and techniques described in the paper can
be applied to other “difficult” and economically important modal analysis
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problems such as the health monitoring of offshore oil rigs. Offshore oil rigs
are a complex assemblage of frame members, and pose additional problems
in that their mass distribution varies considerably due to operational and
environmental influences, for example, storage/removal of oil in tanks, pres-
ence or otherwise of marine growth on submerged portions of the primary
support structure.
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