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Sloan iteration and Richardson extrapolation
for Walsh series solutions of integral equations

W. F. Blyth∗ V. Uljanov∗
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Abstract

Algorithms have been developed by the authors and co-workers
for the solution of both Volterra and Fredholm integral equations by
using the discontinuous wavelet packets known as the Walsh functions.
These Walsh function methods are typically globally convergent of
order one (and locally of order two).

The usual Walsh function method with m = 2n terms approxi-
mates the solution with a piecewise constant function (constant on
each sub-interval of width 1/m). For Fredholm integral equations,
Sloan iteration of the Walsh series solution is globally convergent of
order two.

For linear Fredholm integral equations of the second kind, we show
in this paper that the Sloan iterates for Walsh series solution with
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m and 2m terms can be extrapolated by the Richardson method to
give a function which approximates the solution with global fourth
order convergence. This is very easy and efficient to implement. A
second Richardson iteration for smooth problems results in sixth order
convergence.

With Kulkarni’s example (where the solution is only twice differ-
entiable), a second Richardson iteration results in fifth order conver-
gence. Our new method outperforms Kulkarni’s method: it is easier
implement, more accurate with 64 or more terms and the order of
convergence is one higher.

As a further example, we use the nonlinear Chandrasekar integral
equation for which a new solution method was recently proposed by
the authors. Here, our numerical experiment shows that the Richard-
son extrapolation of the Sloan iteration functions is third order con-
vergent.

The Walsh function methods are intuitively simple and robust.
The straightforward implementation of Walsh series leads to schemes
with low order convergence. However the implementation of the accel-
eration of convergence techniques described here is easy and efficient
and provides schemes of higher order convergence.
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1 Introduction

New methods are always needed to solve integral equations because no single
method works well for all such equations.

There has been considerable interest in solving differential and integral
equations using techniques which involve the discontinuous wavelet packets
known as the Walsh functions, see [2, 3, 4, 5, 6, 13] and references therein.
One of the motivations for these developments is that these methods usually
involve the use of the fast Walsh Fourier transform, which is faster than most
corresponding transforms such as the trigonometric fast Fourier transform.
Also, Walsh functions appear to be easily incorporated into a wide variety of
robust general purpose algorithms.

In [3] an effective method to solve linear Volterra integral equations was
introduced and it was shown how multigrid and Richardson extrapolation
methods can be applied to improve efficiency. However, considerable prelim-
inary work is needed before the Walsh series are introduced. The degenerate
kernel approach requires a high computational time.

Subsequently [4], we showed that, by rewriting the problem in Fredholm
form, the preliminary work and computational time (using the fast Walsh
transform to obtain the double Walsh series for the modified kernel) to obtain
the linear equation for the Walsh coefficients is greatly reduced. Volterra
equations are solved effectively and efficiently with this new Walsh function
method approach.

The straightforward implementation of Walsh function methods typically
gives schemes that are globally convergent of order one (and locally of order
two). This is why the idea of nested iteration using Richardson extrapolation
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of the Walsh series coefficients to seed each new level Picard iteration and
to extrapolate to the final Walsh series result was introduced in [2] and
further refined in [3, 4]. This resulted in more efficient and more accurate
solutions. However, as is usually the case, the Walsh function method with
m = 2n terms approximates the solution with a piecewise constant function
(constant on each sub-interval of width 1/m).

In 1976, Sloan [12] proposed an iteration method to improve the conver-
gence rates of Galerkin projection method solutions for Fredholm integral
equations. Sloan’s approach uses post-processing of the usual Galerkin so-
lution. Recently, Kulkarni [10] proposed a new method which cannot be
regarded as post-processing of Galerkin solutions. For a Galerkin method
with first order convergence, Sloan iteration gives second order convergence
and Sloan iteration of Kulkarni’s method gives fourth order convergence.

For Fredholm integral equations, Sloan iteration of the Walsh series so-
lution results in a continuous function which approximates the solution and
is globally convergent of order two.

For linear Fredholm integral equations of second kind, we show that the
Sloan iterates for Walsh series solution with m and 2m terms can be extrap-
olated by the Richardson method to give a function which approximates the
solution with global fourth order convergence. This is easy and efficient to
implement. Further extrapolation leads to still higher order convergence: a
second Richardson iteration for smooth problems results in sixth order con-
vergence. This is supported by the results of numerical experiment on test
problems from Atkinson [1] and Kress [9].

In the case where the solution is less smooth, our numerical experi-
ment with Kulkarni’s example (where the solution is only twice differen-
tiable) shows that the Richardson extrapolation remains globally convergent
of fourth order. A second Richardson iteration in this case results in fifth
order convergence. Our new method outperforms Kulkarni’s method: it is
more accurate with 64 or more terms and the order of convergence is one
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higher.

As a further example that is nonlinear, we use the Chandrasekar integral
equation for which we recently proposed a new solution method [6]. Our
numerical experiment (details omitted) shows that Richardson extrapolation
of the Sloan iteration functions are convergent of order three.

The Walsh function methods are intuitively simple and robust. The
straightforward implementation of Walsh series leads to schemes with low
order convergence. However, the implementation of the acceleration of con-
vergence techniques described here is easy and efficient (at almost no com-
putational cost) and provide schemes of higher order convergence.

2 Walsh functions

The Walsh functions have many properties similar to those of the trigonomet-
ric functions. For example they form a complete, total collection of functions
with respect to the space of square Lebesgue integrable functions. However,
they are simpler in structure to the trigonometric functions because they take
only the values 1 and −1. They may be expressed as linear combinations of
the Haar functions [8], so many proofs about the Haar functions carry over
to the Walsh system easily. Moreover, the Walsh functions are Haar wavelet
packets; see [14] for a good account of the properties of the Haar wavelets
and other wavelets.

We use the ordering of the Walsh functions due to Paley [11]. Any func-
tion f ∈ L2[0, 1) can be expanded as a series of Walsh functions

f(x) =
∞∑
i=0

ciWi(x) where ci =

∫ 1

0

f(x)Wi(x) dx . (1)

Fine [7] discovered an important property of the Walsh Fourier series:
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the m = 2nth partial sum of the Walsh series of a function f is piecewise
constant, equal to the L1 mean of f , on each subinterval ((i − 1)/m, i/m).
For this reason, Walsh series in applications are always truncated to m = 2n

terms. In this case, the coefficients ci of the Walsh (–Fourier) series are

ci =
m−1∑
j=0

1

m
Wijfj , (2)

where fj is the average value of the function f(x) in the jth interval of
width 1/m in the interval (0, 1), and Wij is the value of the ith Walsh function
in the jth subinterval. The order m Walsh matrix, Wm, has elements Wij.

3 The linear Fredholm equations and Walsh

series solution

We consider Fredholm integral equations of the second kind of the form

y(x) = g(x) +

∫ 1

0

K(x, t)y(t) dt . (3)

Look at three examples.

1. The Kress test problem with solution y(x) = e−x is taken from [9,
p.158]:

y(x) = e−x − 1

2
+

e−x−1

2
+

∫ 1

0

x + 1

2
e−xty(t) dt (4)

2. The Atkinson test problem with solution y(x) = ex istaken from [1,
p.102]:

y(x) = ex +
1

2

(
1− ex+1

x + 1

)
+

1

2

∫ 1

0

exty(t) dt . (5)
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3. The Kulkarni test problem with solution unknown, although y ∈
C2[0, 1] , is taken from [10]:

y(x) = 1 + x5/2 +

∫ 1

0

1

1 + (x− t)2
y(t) dt . (6)

To solve a linear Fredholm integral equation [5], we represent functions
y and g by their Walsh series, truncated to m terms. The kernel K(x, t) is
approximated by a truncated double Walsh series

K(x, t) =
m−1∑
i=0

m−1∑
j=0

kijWi(x)Wj(t) ,

where

kij =

∫ 1

0

∫ 1

0

K(x, t)Wi(x)Wj(t) dx dt , (7)

and it is easy to show that the integral equation can be rewritten as the
simple linear problem

cm = gm + Kmcm , (8)

where Km is the matrix with elements kij. This can be solved directly for
simple problems and low m, but would usually be solved by ordinary (Picard)
iterations.

The first task is to calculate the matrix containing the coefficients of
double Walsh series Km = (kij) . If m = 2n (as is always the case in appli-
cations), then Km = 1

m2WmK̄mWm. This is the double Walsh transform of
the matrix K̄m of the average values of K(x, t) on all subintervals. Since the
area of each of these 2D subintervals is 1/m2, we rewrite this as

Km =WmAmWm , (9)

where Am is the matrix of the double integrals of K(x, t) over the subintervals.
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For the ith x-subinterval and jth t-subinterval of a square subregion, the
element of Am is

aij =

∫ i/m

(i−1)/m

∫ j/m

(j−1)/m

K(x, t) dt dx . (10)

4 Solution using Sloan iteration and

Richardson extrapolation

The Sloan iterate, ỹm, is defined in the usual way as

ỹm(x) = g(x) +

∫ 1

0

K(x, t)ym(t) dt . (11)

However, the ym(t) in the integrand is the Walsh series truncated to m = 2n

terms: the approximate solution of equation (3). Thus ym(t) is piecewise con-
stant (equal to ȳi, the average value of y on the ith subinterval of width 1/m)
and the integration is particularly simple: it is a sum of integrals∫ 1

0

K(x, t) ym(t) dt =
m−1∑
i=0

ȳi

∫ (i+1)/m

i/m

K(x, t) dt . (12)

For the Atkinson example 2, equation (5),∫ (i+1)/m

i/m

K(x, t) dt =
e(i+1)/m − ei/m

2x
,

and the Sloan iterate for m = 4 is the continuous function

ỹ4 =
1

x(x + 1)

[
− 0.5647833767062312− 0.06478337670623124 x

+ ex/4(−0.16010441943408682− 0.16010441943408682 x)
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Figure 1: The error function for the Richardson Richardson extrapolation
of the Sloan iterate, yRiRim with m = 64 , for the Atkinson problem 2.

+ ex/2(−0.20558795583134673− 0.20558795583134673 x)

+ e(3x)/4(−0.2639921252256509− 0.2639921252256509 x)

+ ex(1.1944678771973156 + 0.8353269629677931 x + x2)
]
.

Since these Sloan iterates have global convergence of order two, we in-
troduce a Richardson extrapolation of the Sloan iteration functions to give
a Richardson extrapolation function

yRi2m(x) =
4

3
ỹ2m −

1

3
ỹm . (13)

Our numerical experiments show that this Richardson extrapolation for linear
problems is convergent of order four. Thus we use Richardson extrapolation
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Table 1: L∞ errors and the error ratios using Sloan iteration, a Richardson
extrapolation and two Richardson extrapolations for the Atkinson problem 2.

m Sloan r Rich r RichRich r
4 1.86× 10−2

8 4.68× 10−3 3.961 6.05× 10−5

16 1.17× 10−3 3.990 3.83× 10−6 15.80 5.12× 10−8

32 2.94× 10−4 3.998 2.40× 10−7 15.95 8.12× 10−10 63.1
64 7.34× 10−5 3.999 1.50× 10−8 15.99 1.27× 10−11 63.8

128 1.84× 10−5 4.000 9.37× 10−10 16.00 2.02× 10−13 62.9
256 4.59× 10−6 4.000 5.87× 10−11 16.00 6.80× 10−15 29.7

a second time to give the smooth solution function

yRiRi2m(x) =
16

15
yRi2m−

1

15
yRim . (14)

These Richardson extrapolations are obtained at almost no cost, but give
schemes that are convergent of order six for smooth problems.

The error for the double Richardson extrapolation of the Sloan iteration
for the Atkinson problem 2 is plotted in Figure 1. This is for the m = 64
case (which requires the usual Walsh series solution and Sloan iteration for
m = 16 , 32 and 64). The exact solution is ex and the maximum error is at
x = 1 . In Table 1 we use L∞ errors. It is clear that the sequence of the
yRiRim is sixth order convergent and the limit of precision has been reached
for yRiRi256. Similarly for the Kress problem 1 which also exhibits sixth order
convergence for the yRiRim and precision limits are evident in yRiRi128, see
Table 2.

The Kulkani problem has a solution that is unknown, but is C2. Precision
limits were reached with yRiRi256 and so yRiRi128 was used to approximate
the exact solution. Errors were calculated at one of the points used in [10].
Errors at the other point used by Kulkarni were quite similar and slightly
higher (by < 50%). For this less smooth example the yRiRim is fifth order
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Table 2: Errors at x = 255/512 and the error ratios using Sloan iteration,
a Richardson extrapolation and two Richardson extrapolations for the Kress
problem 1.

m Sloan r Rich r RichRich r
4 2.34× 10−3

8 5.86× 10−4 3.9993 1.33× 10−7

16 1.46× 10−4 3.9998 8.69× 10−9 15.29 4.13× 10−10

32 3.66× 10−5 4.0000 5.49× 10−10 15.82 6.48× 10−12 63.6
64 9.15× 10−6 4.0000 3.44× 10−11 15.95 1.14× 10−13 56.6

128 2.29× 10−6 4.0000 2.17× 10−12 15.90 1.47× 10−14 7.81
256 5.72× 10−7 4.0000 1.48× 10−13 14.66 1.33× 10−14 1.10

Table 3: Errors at x = 1/512 and the error ratios using Sloan iteration, a
Richardson extrapolation and two Richardson extrapolations for the Kulkarni
problem 3.

m Sloan r Rich r RichRich r
4 2.72× 10−2

8 7.04× 10−3 3.870 3.07× 10−4

16 1.77× 10−3 3.967 1.93× 10−5 15.90 1.27× 10−7

32 4.43× 10−4 3.992 1.21× 10−6 15.95 3.57× 10−9 35.6
64 1.09× 10−4 3.998 7.62× 10−8 15.90 1.11× 10−10 32.1

convergent, see Table 3.

5 Conclusion

The direct solution of Fredholm integral equations using Walsh function
methods results in an approximate solution which is a truncated Walsh
series: a piecewise constant function. Straightforward implementation of
these Walsh function methods is only globally convergent of order one. Our
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Richardson seeded nested iteration method, with extrapolation [2, 3, 4], is
superior: it is efficient and it reduces the total error. However, the solution
is still a Walsh series.

A Sloan iteration of a straightforward Walsh function method solution
results in a continuous function and has global convergence of order two.
For linear Fredholm integral of second kind, we show in this paper that
the simple idea of post processing the Walsh series solution using a Sloan
iteration followed by Richardson extrapolation of the Sloan iteration function
gives easily implemented, efficient and high order convergent schemes. This
solution is a function (not nodal values) and so there is no need to interpolate
to approximate the solution at other than nodal points!

The approach introduced here can be extended to nonlinear problems.
As an example that is nonlinear, the Chandrasekar integral equation has a
new solution method recently proposed by the authors [6]. Error estimates
were derived for our Walsh function method solution of the Chadrasekhar
equation. The method was shown to be globally convergent of order one,
with the Sloan iteration globally convergent of order two, so the method
of this paper can be utilized. Here, numerical experiment (details omitted)
shows that the Richardson extrapolation of the Sloan iteration functions are
convergent of order three.

In further work, we will undertake the analysis required to derive error
estimates for this new, accurate and efficient approach to the solution of
Fredholm integral equations.

Acknowledgment: we thank Bob Anderssen for drawing our attention to
the paper by Kulkarni.
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