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The statistical dynamics of turbulent Rossby
wave flow over topography
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Abstract

The statistical dynamics of Rossby wave turbulence is examined by
comparing direct numerical simulation of the vorticity form of the 2-D
Navier—Stokes equation with a non-Markovian statistical closure the-
ory for inhomogeneous flow over mean topography. The quasi-diagonal
direct interaction approximation closure theory is formulated for the
interaction of mean fields, Rossby waves and inhomogeneous turbu-
lence over topography on a generalized §-plane. The competing effects
of nonlinear waves at the large scales and fully developed turbulence
at the small scales is examined by comparing closure theory with en-
semble averaged results from direct numerical simulation at resolution
k = 48 for circularly truncated wavenumber space. This work builds
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on the low resolution f-plane studies of Frederiksen and O’Kane (2005)
and extends the high resolution f-plane studies of O’Kane and Fred-
eriksen (2004) to incorporate waves. We also examine the performance
of a computationally efficient restart or cumulant update procedure
at moderate Reynolds number in the presence of waves.
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ory has its origin in the pioneering work of Kraichnan [3] who developed the
Eulerian direct interaction approximation (DIA) for homogeneous turbulence.
This closure and related Markovianized versions such as the eddy-damped
quasi-normal Markovian model (EDQNM) have been successfully applied to
a variety of important problems including subgrid-scale parameterizations
for eddy viscosity and stochastic backscatter and the study of the statistics
of the predictability of homogeneous turbulent flows (see [2] and references

therein).
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Recently Frederiksen [1] formulated a quasi-diagonal DIA closure to ex-
tend Kraichnan’s homogeneous DIA closure to general inhomogeneous tur-
bulence interacting with mean flows and topography (QDI1A). The work of
Frederiksen [1] was important in that it elucidated the role of the eddy-
topographic and eddy-mean field interactions enabling parameterizations of
the stress due to the interaction of subgrid scale eddies with retained scale
topography. Such parameterizations are essential for realistic simulations of
ocean circulations and are also lacking in atmospheric general circulation
models. O’Kane and Frederiksen [7] examined the performance of the QDI1A
and a more computationally tractable variant termed the cumulant update
QDIA (CcuQ@DIA). They found in their experiments that the QDIA for inho-
mogeneous f-plane two-dimensional turbulence over random topography has
similar performance to the DIA for homogeneous two-dimensional turbulence,
that it is only a few times more computationally intensive than the DIA for
homogeneous turbulence and that a one-parameter regularized version of the
QDIA termed the regularized QDIA (RQDIA), in which transfers are localized,
is in excellent agreement with DNS at all scales.

Frederiksen and O’Kane [2] generalized the QDIA closure theory to the
interaction of Rossby wave turbulence with mean fields and topography on
a generalized [-plane which includes a term corresponding to the solid body
rotation vorticity on the sphere that is found to be significant for the structure
of the dispersion relations of Rossby waves in the presence of mean flows, for
the statistical mechanics of Rossby wave turbulence and for closure theory.
Frederiksen and O’Kane [2] further presented low resolution C16 (circularly
truncated wavenumber space at k = 16) studies of the closure performance for
flow over an isolated conical mountain and for observed northern hemisphere
flows. In this paper we examine the performance of the closure at much
higher resolution (C48) where the effects of waves at the large scales acts
to suppress the exchange of energy and enstrophy between the large and
small scales where turbulent eddy-eddy interactions dominate. These higher
resolution results enable comparison to the high resolution f-plane studies
of O’Kane and Frederiksen [7] for turbulent flow over topography. We are
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particularly interested in the performance of the cumulant update or restart
procedure [5, 6] at high resolution when waves are present.

In Section 2, we state the barotropic vorticity equation for flow over
topography and Rossby wave turbulence on a generalized (-plane and in the
presence of a large scale flow U. We also discuss the form-drag equation for
the large scale flow U. We use a generalized form of the S-plane equations for
the small-scales and the large scale flow U that allows the closure equations
to be written in compact form with the sums over wave number extended
to include a zero wavenumber component that incorporates the large scale
flow term. In Section 3 we summarize the QDIA equations that include the
off-diagonal covariance matrix and non-Gaussian terms.

In Section 4 we then consider the generation of Rossby waves when large
scale turbulent flow interacts with single realization mean topography with
random phase and amplitude appropriate for the study of atmospheric flows.
We examine the performance of the QDIA closure in comparison with en-
semble averaged direct numerical simulation (DNS) at moderate resolution
(k < 48) and moderate large scale Reynolds number (= 305).

2 2-D flow on a generalized (-plane

The differential rotation rate plays an important role in the interaction of
mean flows, turbulence and topography in many geophysical fluid dynamics
contexts. Here we include this effect through the [-plane approximation
generalized to include a term representing the solid body rotation vorticity of
the corresponding spherical geometry problem. We represent the full stream
function ¥ = ¢ — Uy, where U is a large-scale east-west flow and v represents
the small scales. The evolution equation for two-dimensional motion of the
small scales over a mean topography on a generalized (-plane is described
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by the barotropic vorticity equation

o¢

E_—J(¢—Uy,(+h+ﬁy+k§Uy)+ﬁv2§+f0. (1a)
Here f° is the forcing, o the viscosity,
_0Yo¢ O og

is the Jacobian, and kg is a wavenumber that specifies the strength of the
large-scale vorticity corresponding to the solid body rotation on a sphere.
The vorticity is the Laplacian of the stream function ¢ = V%) . We assume
that the variation in the topography (AH) is small, and define h to be the
scaled spatial variation of the height of the topography relative to the total
depth. The form-drag equation for the large-scale flow U is the same as on
the standard B-plane. With the inclusion of relaxation towards the state U
it takes the form

ou 1 oY -
—_— == —dS U-U). 2

ot S /S gp ¥ Tl =U) )
Here, « is a drag coefficient and S is the area of the surface 0 < x < 27,
0 <y < 27. In the absence of forcing and dissipation, Egs. (1) and (2)
together conserve kinetic energy and potential enstrophy.

The standard 3-plane vorticity equation is obtained by setting k2 to zero.
However, note that there is a one-to-one correspondence between the gener-
alized (-plane equation and that for flow on the sphere in the presence of a
solid body rotation contribution. The non-dimensional barotropic vorticity
equation can be derived by choosing a length scale of a/2, half the earth’s
radius, and a time scale of 27!, the inverse of the earth’s angular velocity.
We derive the corresponding spectral space equations by representing each
of small-scale terms by a Fourier series where

Gelt) = # /0 " x C(x, 1) exp (—ik - ). (3)
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and x = (z,y), k = (ks ky), k = (k2 + k2)"/? and (_y is conjugate to (.

The spectral equations for the small-scales on the generalized (3-plane can
be combined into a compact form by defining suitable interaction coefficients,
representing the large-scale flow as a component with zero wavenumber and
extending the sums over wavenumbers. We represent the barotropic vorticity
equation (1) in the spectral form

(% N V0<k)kz) Gt) = SN d(k+p+a) [K(kp )¢ pC g

pPET qeT

+ Ak, p, q)¢—ph—q| + fi- (4)

Here f is the forcing and the complex 1 (k) is related to the viscosity 7 and
the intrinsic Rossby wave frequency wy by

vo(k)k? = Dk? 4wy (5)

where wy, = —fk,/k?*. Also we define (_¢ = ikoU , (o = (*, and introduce a
term h_g that we take to be zero but which could more generally be related
to a large-scale topography. We define fJ and 14(ko) by fi = aly and
vo(ko)ks = a respectively. Thus the spectral form of the barotropic vorticity
Eq. (4) holds for all k in the set T=RUO.

Note that U is real and we define (o to be imaginary. This is done to
ensure that all the interaction coefficients that we use are purely real. It is
then possible to extend the sums over p and q to include the vector 0, to
define appropriate real interaction coefficients and map the (-plane problem
into the same form as the f-plane problem. Note that we distinguish between
0 and —0 in this representation and these components are complex conjugate,
as is the case for the small-scale components with oppositely signed wave
vectors. The interaction coefficients needed in Eq. (4) are defined by
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A(k7 p, q) = _’Y(pquy - pquw)/pQ ) (6)
K(k,p,q) = % [A(k,p,q) + A(k,q,p)]
= Slpady — Py (0 = )P0 (7)

_ 1, if k+p+q=0,
Ok+p+a) = { 0, otherwise.

(8)

Our definitions of the interaction coefficients are generalized to include the
zero wave vector as any of the three arguments by specifying

—ko/2, ifk=0,
v = ko, ifq=0orp=0, (9)
1, otherwise;
. 1, ifk=0orp=0orq=20,
Qy = { . (10)
qy, otherwise;
. 1, ifk=0orp=0orq=0,
Py = { . (11)
py, otherwise.
Note that
K(k,p,q) + K(p.q,k) + K(q,k,p) =0 (12)

for all k, p and q including the zero vectors. With these definitions of the
interaction coefficients it can also be shown that Eq. (2) for the large scales
can be written in the form Eq. (4).

3 QDIA closure equations

The method of deriving the QDIA closure equations [1] and its variants the
cuQDIA and RCUQDIA [7] with k in the set T, has been described in detail
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elsewhere [2]. Here we very briefly state the governing QDIA equations. Sup-
pose we have an ensemble of flows satisfying the spectral barotropic vorticity
equation and we express the vorticity (i and forcing f{ in terms of their en-
semble means, denoted by ( ), and the deviations from the ensemble mean,
denoted by "

Ge = (G + G (13a)
fie = Cheh+ - (13D)

The equation for the ensemble mean can then be written

(5 +00) @) = Y dk+p+a)

X [K (&, p, @){{C-p)(C-a) + Cpqlt:t)}
+ A(ka p, Q)<C7p>h7q} + <f1(<)> ) (14)

and the equation for the two-point cumulant is defined in terms of the devi-
ation from the mean ( by

Cpalt:s) = (Cp(t)Ca(s)) - (15)
Throughout this section p and q both range over the set T.

Thus, we see from Eq. (14) that to determine the mean field we need
an equation for the two-point cumulant C_, _(¢,t). However, the cost of
computing the full covariance matrix is prohibitive at any reasonable reso-
lution [4]. The quasi-diagonal DIA closure equations instead express the off-
diagonal two-point cumulant and response functions in terms of the diagonal
elements. The resulting equations for the mean field, two-point cumulant and
response functions are expressed entirely in terms of the diagonal elements
of the two-point cumulant and response functions and are computationally
much more efficient than the general inhomogeneous closure equations [4].

The @DIA approach uses renormalized perturbation theory to derive the
following first order expression for the off-diagonal elements of the covariance
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matrix:

Ci.(t, 1)

/t ds Ry(t,s)Ci(s,t")

to

x[A(k, =11 = k)hge1) + 2K (k, =11 — K) (1) (5))]

t/
+ / ds R_l(t/, S)Ck(t, 8)

to
X [A(—l, k,1— k)h(k_l) + 2K(—l, k,1— k) <((k_1)(8>>]
+ Ru(t, to) Ra(t' to) K (to, o) (16)

where f(l(j)_l(to, to) is the contribution to the off-diagonal covariance matrix
at initial time ¢, [7]. Similarly, the off-diagonal elements of the response
function, which measures the change in the vorticity perturbation due to an
infinitesimal change in the forcing, that is

Ria(t, ) = <§j€‘;((:/))> , (17a)

may be written in purely diagonal terms as in [1, Eq. (A.12)]. We also use
the abbreviations

Ck(t, t/) == Ck7_k(t, t/) 3 Rk(t, t/) = Rk7k<t, t/) . (17b)

Then, using Eq. (16) in Eq. (14), we obtain the mean-field equation to second
order in renormalized perturbation theory.

The expression for the diagonal two-time cumulant in terms of two- and
three-point terms is

(% + l/o(k)k:Q) C(t,t)

=) > 6k +p+ @Ak p,a)Cpk(t,t)hg
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+) ) d(k+p+aK(kp,q)

X [(Cp (1) Coqic(t, ) + Copic(t, 1) {Cq(8)) + {Cp(£)C-a(t)Csc(t))]

+ /t, ds F2(t,s)R_x(t',s), (18)

to

where FO(t,s) = (f(t)f2*(s)) is the random forcing. To close this equation
we also need an expression for the three-point cumulant and this is derived
in the same way as for the DIA closure for homogeneous turbulence:

<€—l(t)é(l—k) ()G (t))
_9 / s K, 11— K)Ca(t, 8)Co s (b, ) Ru(t 5)

to

t
+ 2/ ds K(—1,1-k,k)R_i(t,s)Ca_w)(t,s)Ck(t', s)

to

t
42 / ds K (1 k,—L k) Rao(t, $)C1(t, s)Cu(' 5)

to

+ R_i(t, to) Ra—i)(t, to) Rx(t, to)K(_gﬁ(l_k),k(to, to, to) , (19)

where K (_31)(1_1() «(to, to, to) allows for non-Gaussian initial conditions. Simi-
larly the equation for the diagonal two-time response function Ry(¢,t') [1,
Eq. 3.8] contains the three-point (D1A) [3] and two-point (QDIA) [1] terms.

The numerical approach that we have followed is the same as that used in
references |7, 2]. The forward time step is achieved via a predictor-corrector
scheme while the time-history integrals in the cumulant and mean-field equa-
tions are discretized by the trapezoidal rule. The QDIA is a second order
renormalized closure and thus contains all higher order terms to some ap-
proximation. The closure and DNS models are formulated for discrete spectra
on the doubly periodic domain and run over half the wavenumber space by
invoking conjugacy thereby reducing the number of interaction coefficients
by half and gaining a doubling in computational speed. The k = 48 case
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presented (see Figure 1) has 7,213 components and we also have 7 sets of
15,260,713 non-zero interaction coefficients to be summed over. As the QDIA
is non-Markovian long time integrations represent a significant computational
challenge.

The restart procedure [5, 6] allows the potentially long time history inte-
grals to be periodically truncated and the information about non-Gaussian
correlations arising from the three-point term, and that of the off-diagonal
elements (two-point term) to be estimated and added on in the new initial
conditions. This procedure is employed at time intervals of sufficient length
to capture the critical information about the off-diagonal elements while still
reducing the computational challenge to a realistic task. For insufficiently
long restart periods instabilities developed rapidly followed by CFL numerical
instability. Importantly, in the regime of strong turbulence the presence of
waves was not found to impact significantly on the performance of the cu-
mulant update procedure. The spectral DNS code was found to have similar
stability properties to the closure for a given time step.

4 Results and discussion

Figure 1 compares the zonally averaged kinetic energy e(k,) [2, Egs. 5.1a,
5.2a] of the QDIA closure to DNS for flow over single realization mean topogra-
phy with a particular random phase after a nondimensional evolution period
of t; = 0.2. The DNS represents an average of 200 realizations whose phases
are initially random whereas the QDIA employs a cumulant update method
to render the time history integrals tractable at circularly truncated k£ = 48
resolution in wavenumber space. In addition the QDIA closure makes use of
a regularization procedure to properly represent all higher order terms. The
details of the regularized CUQDIA closure are complex and are detailed in [7].
Put simply, regularization acts to restrict the range of the triad interaction
terms via a cutoff parameter ov where ©(p— g)@(q— g) acts on the K (k, p,q)
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FIGURE 1: Zonally averaged mean (e) and transient é kinetic energy at C48
resolution for initial and final times. The zonal average sums over k, for a
given k, in e(k,,t).
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and A(k, p, q) interaction coefficients thereby ensuring consistency with Kol-
mogorov’s hypothesis of local interactions in wavenumber space. Here, O is
the Heavy side step function which vanishes for negative argument and is
otherwise unity. Stability properties required that the minimum cumulant
update period was t = 0.04 corresponding to a restart at every 20 time steps.
A regularization parameter of & = 4 was found to universally give the correct
small scale behavior.

The nondimensional parameters we used are: time step At = 0.002,
viscosity 7 = 0.0025, 8 = k3 = 0.5, large scale flow U = 0.06456 corre-
sponding to 15ms™!, initial transient enstrophy spectrum Cy(0,0) = 1.8 x
10~ 'k? exp (—2k) , initial mean vorticity amplitude ((x(0)) = k/(1 + k*) and
topographic amplitude hy = 0.1 x /Cx(0,0). The DNS vorticity, mean clo-
sure vorticity and topography have random phase. The initial fields have gen-
eral similarities to those observed in atmospheric flows as does the spectrum
of the topography which falls away rapidly at the small scales. Figure 2 shows
the evolution of the skewness [7, Eq. 5.4d]| which is a very sensitive measure of
the small scale differences between closure and DNS where again we see close
agreement. The final large scale Reynolds numbers are R}™(t7) = 282.85
and RYN(ty) = 285.18 respectively.

5 Conclusion

In conclusion, we have developed the QDIA closure theory for the interaction
of mean fields with Rossby waves and two-dimensional turbulence on a gen-
eralized (B-plane. The generalized (3-plane model for the barotropic-vorticity
equation allows us to establish a one-to-one correspondence between the dy-
namical equations and Rossby wave dispersion relations on the 3-plane and
on the sphere. Our examination of the performance of the regularized cUQ-
DIA closure at C48 resolution, in comparison with the statistics of large en-
sembles of DNS at moderate resolution and moderate large scale Reynolds
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number, found close agreement at all scales. The cumulant update or restart
procedure performs well for restart evolution periods of ¢ = 0.04, although
any significant reduction in restart time was found to generate instabilities
and lead to CFL instability (not shown). In the regime of strong transients
at the small scales and strong mean field at the largest scales, the cumulant
update QDIA on the generalized 3-plane was found to compare very closely
to DNS with the restart procedure correctly handling large scale waves and
strong small scale turbulence.
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