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Interior layer structure in the Newtonian
blown film
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Abstract

The techniques and methodology of singular perturbation theory
analyse the film blowing of an incompressible Newtonian film. An ap-
propriate, physically relevant small parameter guides the method of
matched asymptotic expansions to obtain straightforward closed form
approximate expression for the film profile throughout the blown re-
gion. This then determines such related quantities as the film thick-
ness variation, and the film speed. The results of applying this closed
form expression are compared with numerical calculations using the
package Maple. The two methods show encouraging consistency.
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1 Introduction

We present a mathematical analysis of the simplest model of the film blow-
ing process, the widely used industrial process employed to manufacture the
thin polymer film widely used in commercial and domestic applications. In
reality, any full analysis of the most realistic models of film blowing would in-
volve highly nonlinear problems, reflecting the complex physical and chemical
changes occurring during the manufacturing process. However, the relatively
unsophisticated model we analyse here avoids many of the mathematical dif-
ficulties associated with more realistic models, at the same time retaining a
lot of the characteristic solution structure observed.

Prior to considering the mathematical details of this simple model, we
describe the essential features of the industrial manufacturing process itself.
These are displayed schematically in Figure 1. A thin annular die of ra-
dius R0, width E0 extrudes a tube of molten polymer film at a constant
velocity U0. Application of an internal pressure difference ∆P causes this
thin film tube to expand to an increased radius, as shown. At the same
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Figure 1: Schematic of film blowing process.

time, this tube or bubble of polymer is cooled by external air jets from an air
ring located above the die, causing the film to solidify, eventually reaching
a constant radius RD0 with thickness ED0 at the freezeline, where its speed
is UD0 . Subsequently, the overall bubble shape remains unaltered; with the
tube of thin film being rolled flat as a double layered film and drawn off on
to an overhead roller.

For a physically realistic range of values of the significant parameters of
the system, this film bubble radius expansion occurs over a relatively small
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part of the overall bubble region. Thus, we view this localized expansion
region as an interior layer region; appropriate asymptotic methods based on
a suitably chosen small parameter yield approximations to the radius profile
and other related quantities.

We make the assumption that the material comprising the bubble is an
incompressible Newtonian fluid, of constant viscosity η0. Further, we ignore
the effects of gravity on the film, so that it is viewed as a thin shell under
tension only from the drawing rolls and the imposed internal pressure ∆P .
Moreover, we assume that the bubble is in equilibrium, so that the blowing
process is steady, while temperature variations are negligible; that is, the
process proceeds isothermally.

While these assumptions are severe simplifications of the real world film
blowing process, they lead to a mathematical model displaying the overall
features of more sophisticated models.

2 Governing equations

The equations describing the film blowing process for materials displaying a
range of complexity are well represented in the literature [4]. For the present
investigation, we consider only the relatively simple situation of the steady,
isothermal, gravity free dilation of an incompressible Newtonian sheet. Un-
der the assumption of axial symmetry, the only relevant spatial variables
become the radial distance R, measured transverse to the bubble axis; and
axial distance Z measured along that axis from the polymer extrusion die.
Consequently, the state of the film is described completely by the bubble
radius R(Z), its meridional speed U(Z), the film thickness E(Z) and the
tension F (Z); all depending only on the axial variable Z, with Z ranging
from Z = 0 at the injection point (that is, at the die) to Z = D0 at the
freezeline.
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Introducing the dimensionless variables

z =
Z

D0

, r =
R

R0

, u(z) =
U(Z)

U0

,

e(z) =
2πR0U0E(Z)

Q
, f(z) =

F (Z)R0

η0Q
, (1)

where Q is the volume flow rate of fluid in the film, η0 is (as above) its
viscosity, whereas R0, E0, U0 and ∆P are as described above, allows us to
express the momentum and mass conservation equations as the nonlinear
differential equation for r(z)

2C2r2
(
f0 + B

(
r2 − 1

))
r′′ − 6Cr′ + 4Br3

(
1 + C2 (r′)

2
)

− r
(
f0 + B

(
r2 − 1

)) (
1 + C2 (r′)

2
)

= 0 , (2)

where the dimensionless quantities

B =
π∆PR3

0

η0Q
, C =

R0

D0

, f0 =
F0R0

η0Q
, (3)

respectively, and F0 = F (0) , together with the differential equation for u(z),

2C (2ru′ + ur′)− ru
(
f0 + B

(
r2 − 1

)) (
1 + C2 (r′)

2
)

= 0 ; (4)

the algebraic equation for e(z),

r(z)u(z)e(z) = 1 ; (5)

and the force condition for

f(z) = f0 + B
(
r2 − 1

)
. (6)

Appropriate boundary conditions at the ends of the bubble are

r(0) = 1 , r′(1) = 0 , u(0) = 1 , e(0) = 1 . (7)
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Figure 2: Typical bubble radius profile r(z).

Note that Equation (2), while highly nonlinear, is a single equation for r(z)
that may, in principle, be solved subject to the boundary conditions (7).

This solution may then be applied to (4) and (7), to obtain expressions
for the film speed u(z), while (5), (6) and (7) yield the film thickness e(z)
and tension f(z).

3 Numerical results

The nonlinear boundary value problem comprising the differential equa-
tion (2) together with the boundary conditions (7) cannot be solved an-
alytically; numerical methods must be employed. Typically, we expect a
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Figure 3: Radius profile r(z) for decreasing C-values. Smaller C-values
correspond to steeper slopes in the transition region.

shooting method to be appropriate, using initial conditions r(0) = 1 and
r′(0) = k , with k being adjusted to meet the second boundary condition at
z = 1 [5, 6, 7]. However, in the present case, we experienced instability due
to the zero slope condition at z = 0 [1, 2]. Thus, here a backward shooting
technique is employed, by which (2) was integrated from z = 1 back to z = 0 ,
with initial conditions

r(1) = ρbu and r′(1) = 0 , ρbu =
RD0

R0

, (8)

where ρbu is the blow up ratio. A typical bubble radius profile is shown in
Figure 2. The radius changes relatively slowly for some distance from the die
(z = 0); then follows a region of rapid expansion, followed by a third region of
again relatively slow variation, until the freezeline (z = 1) is reached. Here,
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we are interested in discovering how this region of rapid change (‘interior
layer’) is derived from (2), which of the physical parameters B, C, f0 define
its structure; and how we may obtain useful approximations to the radius
profile. Figure 3 displays the radius profile for fixed values of B and f0, and
decreasing values of C — C = 0.15, 0.13, 0.11, 0.09 and 0.07 . The interior
layer structure appears to arise as a result of the limiting process C → 0 .
Thus, it seems that a perturbation analysis based on this limit may yield
useful results. Accordingly, we employ perturbation techniques to construct
an approximation to the film bubble profile r(z).

4 Perturbation analysis

Rearrange (2) to the form

C2r′′ + α(r, r′, C)r′ + β(r) = 0 , (9)

where

α(r, r′, C) =
C2 (3Br2 − f0 + B) rr′ − 6C

2r2 (f0 + B (r2 − 1))
, (10)

and

β(r) =
(3Br2 − f0 + B) r

2r2 (f0 + B (r2 − 1))
. (11)

We assume that the interior layer (region of rapid bubble radius variation)
is centred at z = a , and that r(a) = λ , where a and λ are to be determined.
For the numerical results of Section 3, we expect a ≈ 0.5 and λ ≈ 1.7 . Then
view the solution of (9) on [0, 1] as the union of solutions r1(z) and r2(z) on
[0, a] and [a, 1], with boundary conditions

r1(0) = 1 , r1(a) = λ and r2(a) = λ , r′2(1) = 0 , (12)

respectively, together with suitable smoothness conditions at z = a . For
C → 0 , the structure of these solutions depends heavily on the (unknown)
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Figure 4: Variation of α(r, r′, C) of Equation (9).
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Figure 5: Variation of β(r) of Equation (9).
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sign of α(r, r′, C). For the numerical results of Section 3, α(r, r′, C) is plotted
over all of [0, 1] and for a range of (small) C-values, as in Figure 4. Analogous
plots for β(r) over [0, 1] are displayed in Figure 5. The plots of Figures 3,
4 and 5 display several significant features. Figure 3 shows that the radius
profile has an inflexion point z = z1 (that is, where r′′(z1) = 0) near to z = a .
Figure 4 shows that α has a zero z = z2 near to z = a (and z = z1); and that
α < 0 on [0, z2). Figure 5 shows that β(r) displays a zero at z = z3 near all
of a, z1 and z2; and from (11), see that this corresponds to

r = r3 =

√
f0 −B

3B
. (13)

In the analysis to follow, we choose a = z2 ; that is, we centre the layer region
on the zero of α.

While clearly a varies with C, the variation is not great; so it is plausible
that the solution r1 of (9) on [0, a] satisfying the first of (12) is mimicked, in
some sense, by that of the semilinear equation

C2r′′ + k(z)r′ + β(r) = 0 , (14)

where k(z) is a function such that k(z) < 0 on [0, a) and k(a) = 0 . Recall
that C is small, then from standard perturbation theory results [3], such a
solution will display a layer of thickness O

(√
C2
)
, that is, O(C), to the left

of z = a . In this case, the method of matched expansions constructs an
approximation to the solution over the subinterval [0, a].

On [0, a), and bounded away from z = a as C → 0 , we solve Equation (2)
using a perturbation expansion in C2, subject to the boundary condition at
z = 0 . This is our outer expansion [3] on the first subinterval. Note that in
this construction, we regard C2 as small; but the C term in (2) is retained,
so that in this region, r1 is determined as the solution of

−6Cr′1 + 4Br3
1 − r1

(
f0 + B

(
r2
1 − 1

))
= 0 , r1(0) = 1 , (15)

which is readily obtained by standard methods.
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In the O(C) neighbourhood to the left of z = a , we expect r1 to be
given by the solution of an equation of the form of (14) for a suitably deter-
mined k(z). To do this, we seek an explicit estimation of α(r, r′, C) in this
layer region. Here, r′1 is large (and positive); and we seek an estimate for this
quantity. Recalling that z = z1 , the point of inflexion of r is near to z = a ,
we set r′′ = 0 in Equation (2) and solve for r′ to obtain

r′ = r′1,2 =
3±

√
9− (3Br2 − f0 + B)2 r2

Cr (3Br2 − f0 + B)
. (16)

Substitution of r′1,2 into (10) gives an estimate of α in the layer, as a function
of r. We also note that r ≈ r3 there; so that applying (13) to (16) will give
values to r′1,2. Thus, an estimate of α′ in the layer is

α′ ≈
α(z = a)− α

(
r =

√
f0−B
3B

)
C

, (17)

which gives, after manipulation,

α′ ≈ 27B

4 (f0 −B)2 = M , say. (18)

(Note that one of the values of r1,2 gives α′ ≈ 0 , which we regard as unreal-
istic.)

So, throughout the layer,

α ≈ M(z − a) (19)

so that in the layer to the left of z = a , the governing differential equation
for r1 is

C2r′′1 + M(z − a)r′1 + β(r1) = 0 , (20)

where M is as above. The functional form of β(r1) given by (11) makes the
differential equation (20) well nigh impossible to solve. However, we argue
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that the essential nature of the solutions of (20) are governed by the first
two (derivative) terms; so we set β(r1) = 0 in (20) and we use the remaining
terms to construct the boundary layer function r1. Thus, in terms of the local
variable ξ = (a − z)/C , the differential equation governing an approximate
solution in the layer left of z = a is

d2r̃1

dξ2
+ Mξ

dr̃1

dξ
= 0 , (21)

where r̃1(ξ, C) ≡ r1(a − Cξ, C) , and primes denote derivatives taken with
respect to ξ. This may be solved subject to the boundary condition r̃1(0) =
λ . If the results of this calculation, and that for r1 above, are combined
using the matching process, then a leading order approximation to r1 valid
over all of [0, a] (that is, the leading term of a composite expansion) is found
to be

r1c(z, C) = φ(z, C) + (φ(a, C)− λ) erf

(√
2M(a− z)

2C

)
+ λ− φ(a, C) , (22)

where

φ(z, C) =

{(
1− 3B

f0 −B

)
exp

[(
f0 −B

3C

)
z

]
+

3B

f0 −B

}−1/2

, (23)

and M is as given above.

On [a, 1], the situation is different. As Figure 4 shows, while α > 0 there,
it is also very small there. Thus, whereas standard theory would indicate a
layer to the right of, and adjacent to z = a , we anticipate this effect to be
small.

We thus seek a simple equation which approximates the full nonlinear
equation (2) over all of [a, 1]. The profiles of Figure 3 imply that, on this
subinterval, r(z) does not vary a lot, while r′(z) is bounded. A reasonable
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estimate over [a, 1] is r(z) ≈ r(1) = ρbu . Thus, we propose that on [a, 1] the
nonlinear equation (2) be replaced by the approximate equation

C2r′′2 −
3Cr′2

ρ2
bu (f0 + B (ρ2

bu − 1))
− (f0 −B (3ρ2

bu + 1))

2ρbu (f0 + B (ρ2
bu − 1))

= 0 , (24)

which is readily solved subject to the second of (12), to give a leading order
approximation to the radius profile on [a, 1] as

r2(z, C) = λ +
1

18
ρ3

buσγ
(
eη(z,C) − eη(a,C)

)
− ρbu

6C
γ (z − a) , (25)

where

σ =
(
f0 + B

(
ρ2

bu − 1
))

, (26)

γ =
(
f0 −B

(
3ρ2

bu + 1
))

, (27)

and η(z, C) =
3 (z − 1)

Cσρ2
bu

. (28)

The boundary conditions (12) ensure that r1c and r2 join continuously at
z = a . A smooth join may be obtained (at least to leading order) by imposing
the conditions

r′1c(a) = r′2(a) , r2(1) = ρbu , (29)

which serve to determine approximate values for a and λ.

An approximate film radius profile rc(z) valid over all of [0, 1] is then

rc(z) = r1c(z) (H(z)−H(z − a)) + r2(z) (H(z − a)−H(z − 1)) , (30)

where H(z) is the Heaviside function.

5 Results and discussion

Approximations r1c and r2 were constructed as in the previous section, using
the data set

B = 0.21 , C = 0.15 , f0 = 0.969 , ρbu = 3.85 . (31)
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Figure 6: Comparison of bubble radius profiles as given by (30) and nu-
merical calculations. The dotted curve is the numerical result.

The conditions (29) gave

a ≈ 0.4100437 and λ ≈ 1.7692546 , (32)

and the overall approximation rc(z) constructed by (30). Figure 6 compares
the results of numerical calculations using the package Maple with the results
obtained above. Agreement between the two profiles seems quite good, given
the somewhat rough estimates used in obtaining the approximating differ-
ential equations (20) and (24). As anticipated, the discrepancy is greatest
in the layer region. Nevertheless, both profiles have much the same struc-
ture, with the rapid transition centred about more or less the same point
in each case. The analysis used here was motivated by a desire to obtain a
straightforward analytical expression for the radial film bubble profile, that
minimized calculation, and provided reasonable accuracy. We feel that the
above calculations have largely achieved this.
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