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An angular spectral method for solution of the
heat equation in spheroidal geometries

D. J. Ivers∗

(Received 28 October 2004, revised 24 June 2005)

Abstract

A spectral numerical method is presented for solving the heat
equation in oblate or prolate spheroids. Cartesian coordinates are
scaled to transform the spheroidal geometry into a spherical geome-
try. The diffusion term in the transformed equation is anisotropic,
being enhanced in the polar directions. The transformed equation is
discretised in angle using a truncated spherical harmonic expansion
of the temperature in transformed spherical polar coordinates. The
anisotropic diffusion term is reduced to block tridiagonal form using
recurrence relations for spherical harmonics. The radial coordinate
is discretised using finite differences in scaled radius but other radial
schemes are possible. Without heat sources and with a homogeneous
Dirichlet boundary condition the problem reduces to an eigenprob-
lem for the decay rate. The results are compared to the separated
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variables solution, which employs oblate or prolate spheroidal wave
functions. The method directly extends to other scalar problems in
spheroidal geometries, which have the highest derivatives in Laplacian
form, including passive advection-diffusion of a scalar. The method
may be extended, with difficulty, to problems with vector diffusion or
ellipsoidal geometries.

1 Introduction

Thermal conduction in solid prolate and oblate spheroids is considered. The
partial differential equation governing the temperature Θ is

∂tΘ = κ∇2Θ +
Q

ρcp

, (1)

where κ is the uniform thermal diffusivity, Q is the heat production per
unit volume, ρ is the mass density, and cp is the specific heat capacity at
constant pressure. On the boundary the temperature satisfies Dirichlet or
Robin conditions;S

Θ = Θ0 or ∂nΘ + αΘ = Θ′
0 . (2)

The problem without heat sources was originally solved by Niven [5] either
for boundary condition (2) with Θ0 = 0 , or for Θ′

0 = 0 and α uniform.

The present study was originally motivated by the close relation between
the oblate spheroidal heat conduction problem and the turbulent anisotropic
thermal diffusion models for the Earth’s core considered by Phillips and
Ivers [6, 7, 8] and Ivers [3]. The convective state of the Earth’s core is
almost certainly turbulent and beyond the resolution of present numerical
geodynamo simulations. In the Braginsky and Meytlis [1] picture of core
turbulence, the transport of momentum and heat is enhanced in preferred
directions such as the rotation axis. Thus the simplest rapid rotation model
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for the turbulent thermal diffusion tensor is Dκ = κ0I + κ11z1z , where
κ0 and κ1 are uniform, which gives the following equation for the mean
temperature Θ̄:

∂Θ̄

∂t
+ v̄ · ∇Θ̄ = (κ0∇2 + κ1∂zz)Θ̄ +

Q

ρcp

. (3)

Equation (3) includes advection due to a mean velocity v̄. The solution
method for (1) presented herein reduces the heat conduction problem to an
equivalent heat problem in a sphere, with anisotropic heat conduction which
depends on the ellipticity of the spheroid. The anisotropic conduction has
the same form as the turbulent anisotropic thermal diffusion due to rapid
rotation in (3). The spheroidal heat conduction problem without advection
is considered here since it has an alternative analytic solution in terms of
spheroidal wave functions, with which to compare the method. Further mo-
tivation came from a study of thermal convection in oblate spheroids [4].
Oblateness is a natural consequence of rotation in planetary and astrophys-
ical objects, although it is typically rather weak. Spheroids also offer the
simplest departure from a spherical geometry regardless of their ellipticity.

The spheroidal heat conduction problem with a homogeneous Dirichlet
boundary condition (2) is formulated mathematically in Section 2. The
method of solution is described in Section 3. In Section 4 the solution in
terms of spheroidal wave functions is outlined. The numerical and analytic
solutions are compared in Section 5. Section 6 contains concluding remarks.

2 Formulation of the problem

Define the boundary of the solid in (dimensional) Cartesian coordinates
(x∗, y∗, z∗) is r = 1 , where r (r ≥ 0) is defined by

r2 :=
x2
∗ + y2

∗
a2
∗

+
z2
∗

b2
∗

. (4)
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Figure 1: Homeoidal oblate spheroids of identical semi-axis ratio a/b = 3 .
The horizontal label s =

√
x2 + y2 .

The asterisks indicate dimensional quantities. When a∗ > b∗ , the level sur-
faces of the variable r are homeoidal oblate spheroids of semi-major axis ra∗,
semi-minor axis rb∗ and identical ellipticity e :=

√
1− (b∗/a∗)2 , but their foci

are at s :=
√

x2 + y2 = era∗ , z = 0 , so they are not confocal. See Figure 1.

Note particularly that r is not the spherical radius
√

x2 + y2 + z2 . When
a∗ < b∗ , the r-surfaces are homeoidal prolate spheroids of semi-axes ra∗, rb∗,
ellipticity e :=

√
1− (a∗/b∗)2 and foci s = 0 , z = ±erb∗ . The z-axis is the

symmetry axis of the spheroids.

The problem is non-dimensionalised using a typical length scale L, the
thermal diffusion time scale L2/κ and a heat source L2/ρcpκ. The dimension-
less Cartesian coordinates and semi-axes are x = x∗/L , y = y∗/L , z = z∗/L ,
a = a∗/L and b = b∗/L . The quantity r is dimensionless and the boundary
remains r = 1 . The operator ∇ := 1x∂x + 1y∂y + 1z∂z is dimensionless. The
dimensionless form of the heat equation (1) for the temperature Θ is thus

∂tΘ = ∇2Θ + Q . (5)
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Useful choices for the length scale L are the semi-axes a∗ or b∗, and the
equi-volume radius (a2

∗b∗)
1/3, since the volume is 4πa2

∗b∗/3. Herein L = b∗
and L = a∗ are used in the oblate and prolate cases respectively. On the
boundary r = 1 the temperature vanishes:

Θ = 0 on r = 1 . (6)

3 Numerical method of solution

3.1 A homeoidal spheroidal coordinate system

Introduce the angular coordinate θ and east-longitude φ in dimensionless
form,

x = ar sin θ cos φ , y = ar sin θ sin φ , z = br cos θ . (7)

Figure 2 shows the coordinates (r, θ, φ) of a point P (x, y, z) on the oblate
spheroid (a > b) for a fixed value of r in a meridional section of fixed φ. In
particular, θ is the angle ∠NOQ, not the co-latitude ∠NOP of P , and ar is
the radius of the sphere escribed on the spheroid. The coordinate system
(r, θ, φ) is not orthogonal.

3.2 Stretched coordinates and equations

To proceed stretch the Cartesian coordinates x̃ = x/a , ỹ = y/a and z̃ = z/b ,
that is, r̃ = L · r , where L is the diagonal scale tensor, L := a−1(1x1x +
1y1y)+b−11z1z , with inverse, L−1 := a(1x1x+1y1y)+b1z1z . The stretching
transforms the level surfaces of r from spheroids into spheres. The variables
(r, θ, φ) introduced in (7) are spherical polar coordinates in (x̃, ỹ, z̃)-space.

The operator ∇̃ is related to ∇ by L−1 · ∇ = ∇̃ .
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Figure 2: Oblate homeoidal spheroidal coordinates r, θ of P in the merid-
ional plane through P .

Equation (5) becomes

∂tΘ = ∇̃ · (D · ∇̃Θ) , (8)

where the diffusion matrix D := L · L is

D =
1

a2

(
I +

e2

1− e2
1z1z

)
or D =

1

a2

(
I− e21z1z

)
(9)

in the oblate and prolate cases respectively. Expanding D yields the oblate
and prolate equations respectively,

∂tΘ =
1

a2

(
∇̃2 +

e2

1− e2
∂z̃z̃

)
Θ or ∂tΘ =

1

a2

(
∇̃2 − e2∂z̃z̃

)
Θ . (10)
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The features of these equations, which are new over thermal conduction
in a sphere, are the anisotropic terms. Thermal conductivity is enhanced
(diminished) in the z-direction by the anisotropy in the oblate (prolate) case.
The boundary condition (6) becomes

Θ = 0 at r = 1 . (11)

3.3 Spectral equations

Expand the temperature Θ in spherical harmonics Y m
n (θ, φ),

Θ =
∑
n,m

Θm
n (r, t)Y m

n (θ, φ) , (12)

where the spherical harmonic of degree n and order m is

Y m
n (θ, φ) := (−1)m

√
2n + 1

√
(n−m)!

(n + m)!
Pm

n (cos θ)eimφ . (13)

The associated Legendre function of the first kind Pm
n is Neumann or Ferrer’s

form defined by

Pn,m(z) = (−1)n 1

2nn!
(1− z2)m/2dn+m(1− z2)n

dzn+m
.

These spherical harmonics are orthonormal with respect to the inner product,
(f, g) := 1

4π

∮
fg∗ dΩ , and Y m

n = (−1)m(Y −m
n )∗ , where the superscript aster-

isk denotes complex conjugation. Y m
n is symmetric (antisymmetric) about

the equator if n−m is even (odd),

Y m
n (π − θ, φ) = (−1)n−mY m

n (θ, φ) . (14)

Spherical harmonics usefully separate variables in the Laplacian,

∇2f(r)Y m
n = Y m

n Dnf , Dnf :=
1

r2
∂r(r

2∂rf)− n(n + 1)

r2
f . (15)
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Derive the spectral expansion of ∂z̃z̃Θ using the following recurrence re-
lations satisfied by the Y m

n ,

cos θ Y m
n = cm

n+1 Y m
n+1 + cm

n Y m
n−1 ,

sin θ ∂θY
m
n = ncm

n+1 Y m
n+1 − (n + 1)cm

n Y m
n−1 , (16)

where cm
n :=

√
(n2 −m2)/(4n2 − 1) , and the operator identity ∂z̃ = cos θ ∂r−

r−1 sin θ ∂θ . Applying these to (12) gives

∂z̃Θ =
∑
n,m

{
cm
n

(
∂r −

n− 1

r

)
Θm

n−1c
m
n+1

(
∂r +

n + 2

r

)
Θm

n+1

}
Y m

n . (17)

One iteration gives the oblate and prolate spectral heat equations respec-
tively,

∂tΘ
m
n =

1

a2

(
DnΘm

n +
e2

1− e2
Θm

z̃z̃,n

)
or ∂tΘ

m
n =

1

a2

(
DnΘm

n − e2Θm
z̃z̃,n

)
(18)

where

Θm
z̃z̃,n = cm

n−1,nD1−n,2−nΘm
n−2+(cm

n,n+cm
n+1,n+1)DnΘm

n +cm
n+1,n+2Dn+2,n+3Θ

m
n+2 ,

cm
n1,n2

= cm
n1

cm
n2

and Dn1,n2 is the second-order radial differential operator,
Dn1,n2 := (∂r + n1/r)(∂r + n2/r) . The m = 0 , n = 2 term contains a non-
zero contribution from Θ0

0 and hence the m = 0 , n = 0 spectral equation
must be included. On the boundary the temperature vanishes by (11):

Θm
n = 0 at r = 1 . (19)

By property (14) the spectral equations decouple into two spherical harmonic
chains for each m ≥ 0 : the odd chain, Θm

m+1, Θ
m
m+3, . . . ; and the even chain,

Θm
m, Θm

m+2, . . . . If the spherical harmonic expansion (12) is truncated at
n = N , then the number of Θm

n coefficients is No := N −m− [1
2
(N −m)] , if

n−m is odd, and Ne := [1
2
(N −m)]+1 , if n−m is even, where the brackets

indicate the integer part.
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The highest derivative, which occurs in either spectral heat equation (12)
or (13), is second-order in Θm

n . Any radial discretisation is permissible. For
simplicity the radial functions are discretised using finite-differences on the
uniform grid, rj = jh , j = 0 : J , where the grid spacing h = 1/J . The
spectral heat equation (12) is discretised at the interior points rj, j = 1 : J−1
using the second-order centred finite-difference formulas,

f
(1)
0 =

−f−1 + f1

2h
− 1

6
f (3)(η)h2 , f

(2)
0 =

f−1 − 2f0 + f1

h2
− 1

12
f (4)(η)h2 ,

where the subscripts indicate relative position. The number of unknowns
and equations is (J − 1)No in the odd problem and (J − 1)Ne in the even
problem.

4 Spheroidal wave function solutions

For solutions with separable time-dependence, Θ = Θ̂(r) exp(γt) , the heat
equation (5) with Q = 0 reduces to an eigenproblem for the growth rate γ,

(∇2 − γ)Θ̂ = 0 . (20)

The transformation from Cartesian coordinates to confocal prolate spheroidal
coordinates is

x = 1
2
d
√

(1− η2)(ξ2 − 1) cos φ , y =
d

2

√
(1− η2)(ξ2 − 1) sin φ , z =

d

2
ηξ .

(21)
with −1 ≤ η ≤ 1 , 1 ≤ ξ < ∞ , 0 ≤ φ ≤ 2π . The boundary (4) with r = 1
corresponds to ξ = b/

√
b2 − a2 and fixes d = 2

√
b2 − a2 . The transformation

to confocal oblate spheroidal coordinates is

x =
d

2

√
(1− η2)(ξ2 + 1) cos φ , y =

d

2

√
(1− η2)(ξ2 + 1) sin φ , z =

d

2
ηξ ,

(22)
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Figure 3: Confocal ellipses of semi-minor axes as in Figure 11. The outer-
most ellipses in the two figures are identical.

where now 0 ≤ ξ < ∞ . In oblate coordinates the boundary r = 1 corre-
sponds to ξ = b/

√
a2 − b2 and d = 2

√
a2 − b2 . Compare Figures 1 and 3 to

see the difference between confocal and homeoidal coordinates.

In confocal prolate spheroidal variables equation (20) becomes[
∂

∂η
(1− η2)

∂

∂η
+

∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

ξ2 − η2

(1− η2)(ξ2 − 1)

∂2

∂φ2
+ c2(ξ2 − η2)

]
Θ̂ = 0

(23)
where the growth rate

γ = − c2

b2 − a2
. (24)

The solutions are separable in confocal prolate spheroidal variables,

Θ̂ = Smn(c, η)R(1)
mn(c, ξ)eimφ ,

where n, m are integers with 0 ≤ m ≤ n and the degree n and order m
prolate spheroidal angular function Smn(c, η) and radial function of the first

kind R
(1)
mn(c, ξ) respectively satisfy

d

dη

[
(1− η2)

d

dη
Smn(c, η)

]
+

[
λmn − c2η2 − m2

1− η2

]
Smn(c, η) = 0 , (25)
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d

dξ

[
(ξ2 − 1)

d

dξ
R(1)

mn(c, ξ)

]
−

[
λmn − c2ξ2 +

m2

ξ2 − 1

]
R(1)

mn(c, ξ) = 0 .

Expand the prolate spheroidal angular function Smn(c, η) in a series of asso-
ciated Legendre functions of the form,

Smn(c, η) =

∞∑′

r=0,1

dmn
r (c)Pm

m+r(η) , (26)

where the prime on the summation sign indicates summation over even values
of r when n−m is even and odd values of r when n−m is odd.

A recurrence relation for the dmn
r coefficients can be found [2] by substi-

tuting (26) into (25) and using properties of the Legendre differential equa-
tion produces a tridiagonal eigenvalue problem for the eigenvalue λmn(c) and
the dmn

r (c),

(2m + r + 2)(2m + r + 1)c2

(2m + 2r + 3)(2m + 2r + 5)
dmn

r+2(c)

+

[
(m + r)(m + r + 1)− λmn(c) +

2(m + r)(m + r + 1)− 2m2 − 1

(2m + 2r − 1)(2m + 2r + 3)
c2

]
dmn

r (c)

+
r(r − 1)c2

(2m + 2r − 3)(2m + 2r − 1)
dmn

r−2(c) = 0 , (r ≥ 0). (27)

Using the expressions

γm
r = (m + r)(m + r + 1) +

1

2
c2

[
1− 4m2 − 1

(2m + 2r − 1)(2m + 2r + 3)

]
, r ≥ 0 ,

βm
r =

r(r − 1)(2m + r)(2m + r − 1)c4

(2m + 2r − 1)2(2m + 2r − 3)(2m + 2r + 1)
, r ≥ 2 ,

Nm
r =

(2m + r)(2m + r − 1)c2

(2m + 2r − 1)(2m + 2r + 1)

dmn
r

dmn
r−2

, r ≥ 2 ,
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equation (27) simplifies to a forward or backward two-term recurrence rela-
tion

Nm
r+2 = λmn − γm

r −
βm

r

Nm
r

, Nm
r =

βm
r

λmn − γm
r −Nm

r+2

,

with Nm
2 = λmn − γm

0 and Nm
3 = λmn − γm

1 . The forward form is used for
r ≥ n − m , the backward form for 0 ≤ r ≤ n − m , and the two matched
at r = n − m .1 The arbitrariness of the coefficients dmn

r (c) is removed
by normalizing the spheroidal angular function so that it reduces to the
corresponding associated Legendre function or its derivative when c = 0 .
Thus Smn(c, 0) = Pm

n (0) for n −m even and S ′
mn(c, 0) = Pm

n
′(0) for n −m

odd, see [2].

Expand the spheroidal radial function of the first kind in a series of spher-
ical Bessel functions and the same dmn

r (c) coefficients previously calculated:

R(1)
mn(c, ξ) =

(1− ξ−2)m/2∑′∞

r=0,1
dmn

r (c) (2m+r)!
r!

∞∑′

r=0,1

(−1)
r+m−n

2 dmn
r (c) (2m+r)!

r!
j m+r(cξ) .

(28)

The Dirichlet boundary condition (6) becomes R
(1)
mn(c, b/

√
b2 − a2) = 0 ,

which determines the parameter c and hence by (24) the growth rate γ.
There is a countably infinite set of c values. Figure 4 shows the first three
prolate radial functions and the angular function for m = 1 , n = 1 and
b/a = 2 .

Separable solutions in confocal oblate spheroidal coordinates are

Θ = Smn(−ic, η)R(1)
mn(−ic, iξ)eimφ+γt , γ = − c2

a2 − b2
, (29)

where the boundary condition R
(1)
mn(−ic, ib/

√
a2 − b2) = 0 determines the

parameter c. Figure 5 shows the first three oblate radial functions and the

1Note the differences with equations (3.1.7) and (3.1.8) of Flammer [2].
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Figure 4: The first three prolate radial functions (c ≈ 7.12, 12.62, 18.09)
and the angular function for m = 1 , n = 1 and b/a = 2 .

angular function for m = 1 , n = 1 and a/b = 2 . The poor normalisation of
the associated Legendre functions is apparent in the large amplitude of the
angular function.

5 Results

For either method the solutions are modes proportional to exp(γt + imφ)
and decouple for different azimuthal parameters m. The growth rate γ in
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Figure 5: The first three oblate radial functions (c ≈ 4.86, 10.07, 15.47) and
the angular function for m = 1 , n = 1 and a/b = 2 .

the coordinate scaling method is given by the solution of the matrix eigen-
problem, Ax = γx , where the matrix A, which arises from the discretisation,
is block-tridiagonal in n. The r-blocks depend on the radial discretisation.
Herein they are tridiagonal. The matrix eigenproblem is solved using inverse
iteration.

Growth rates calculated for representative parameter values using the
scaling method with finite-difference are compared to the spheroidal wave
function solutions in Tables 1 and 2. Table 1 shows the level of agreement
in the oblate case with azimuthal wavenumber m = 1 for radial truncation
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Table 1: Growth rates of the smallest-c modes for the oblate case with
m = 1 .

a/b n γ (finite-difference) γ (wave-function)
2 1 −7.8764156 −7.8764188
2 2 −18.241998 −18.242011
3 1 −5.4399222 −5.4399255
3 2 −14.887684 −14.887689
4 1 −4.4962828 −4.4962840
4 2 −13.451924 −13.451923

Table 2: Growth rates of the smallest-c modes for the prolate case with
m = 1 .

b/a n γ (finite-difference) γ (wave-function)
2 1 −16.895242 −16.895258
2 2 −21.763262 −21.763279
3 1 −16.073760 −16.073774
3 2 −19.041299 −19.041309
4 1 −15.699665 −15.699678
4 2 −17.835484 −17.835489

J = 1000 and angular truncation N = 20 . Table 2 shows the level of
agreement in the prolate case with m = 1 for radial truncation J = 1000 and
angular truncation N = 40 .

6 Concluding remarks

The accuracy of the results is restricted by the O(h2) radial finite differences
but the correctness of the method is clear. The method has the advantage
of simplicity and readily extends to more complicated spheroidal problems
with axisymmetric advection and sources, and inhomogeneous boundary con-
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ditions. Recurrence relations (16) and expansion (17) may be used to derive
the additional spectral terms. In fact, (15) and (17) may be used to derive
spectral equations for differential operators of the form P (∇2, ∂z̃), where P is
a multinomial in two variables. The spectral equations may also be used in
steady state and time stepping problems. Nonlinear and vector problems
in spheroidal geometries and ellipsoidal geometries generally are more diffi-
cult to implement [4]. Figures 1 and 3 show that homeoidal and confocal
spheroidal coordinates lead to quite different spheroidal shells, so results of
the method and spheroidal wave functions cannot be compared in that case.
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