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A comparison of staggered and non-staggered
grid Navier–Stokes solutions for the 8:1 cavity

natural convection flow
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Abstract

The Navier–Stokes equations may be discretised using finite-volume
schemes on non-staggered or on staggered grids. The staggered grid
is known to prevent pressure oscillations that may occur on the non-
staggered grid; however, this is at the expense of increased code com-
plexity. Non-staggered grid schemes that employ iterative time inte-
gration are known to require the use of some form of explicit correction
in the construction of the Poisson pressure correction equation. We
investigate a fractional-step pressure-correction non-staggered scheme
and compare it to a similar fractional-step staggered grid scheme for
bifurcated natural convection flow in an 8:1 cavity.
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1 Introduction

Natural convection flow in a cavity with height/width aspect ratio of eight
was used as a benchmark flow for unsteady Navier–Stokes solvers at a special
session of the First MIT Meeting on Computational Fluid and Solid Mechan-
ics [1]. The two-dimensional cavity has heating and cooling applied to the two
vertical walls while the floor and ceiling are insulated. This configuration ex-
hibits unsteady flow at Rayleigh number Ra = 3.4×105 and Prandtl number
Pr = 0.71 , where the Rayleigh number Ra = gβ∆TW 3/(να) , with g grav-
ity, β the coefficient of thermal expansion, ∆T the temperature difference
between the heated and cooled walls, W the cavity width, ν the kinematic
viscosity and α the thermal diffusivity. The Prandtl number Pr = ν/α . The
basic configuration is shown in Figure 1.

The flow exhibits waves travelling up the hot wall and down the cold wall,
circulating continuously around the cavity, and is only marginally supercriti-
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Figure 1: Geometry and boundary conditions.

cal. Figure 2 shows instantaneous temperature and streamfunction contours
for the fully developed flow, showing the basic structure with narrow natural
convection boundary layers formed adjacent to the vertical walls, a stable
stratification in the interior, and a cavity scale circulation. The unsteady
nature of the flow is clearly seen in the temperature time series shown in
Figure 3, which exhibits a sinusoidal oscillation. The wave-like structure of
the flow is seen in Figure 4, where contours of the temperature perturba-
tion, with respect to the time average, are presented. A single perturbation
structure, marked in blue, is seen to travel up the heated wall, transit below
the upper horizontal boundary, and progress into the cold wall boundary
layer, demonstrating that the waves are circulating around the cavity in the
flow direction. The waves result from a convective instability of the bound-
ary layer whereby the boundary layer above a critical location on the heated
wall, and below a critical location on the cooled wall, is unstable to travelling
waves. The complexity of this flow, combining vertical natural convection
and horizontal intrusion boundary layers, stagnation corner flows, a stratified
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Figure 2: Temperature (left) and streamfunction (right) contours.

core, stable and unstable regions and travelling waves, make it an excellent
benchmark for assessing the relative performance of unsteady Navier–Stokes
solvers. Full details of the performance of the twenty two solvers considered
at the conference, for a range of metrics, are given in [2].

Non-staggered grids store all the unknowns at the same locations, as
shown in Figure 5 where both non-staggered and staggered grid config-
urations are shown. In the past many non-staggered grid Navier–Stokes
solvers have been found to suffer from grid-scale oscillations in the pressure
field that adversely affect their performance [3]. A number of approaches
have been used to prevent the pressure oscillations, all of which effectively
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Figure 3: Temperature time series at x = 0.1810 , y = 7.3700 (• in Fig-
ure 1).

modify the continuity equation by the inclusion of a biharmonic pressure
term [3, 4, 5, 6, 7]. Such an approach removes the problem of pressure os-
cillations at the expense of the additional error associated with the inclusion
of the biharmonic operator. These schemes were all derived in the context
of iterative solvers.

Staggered grid schemes automatically couple the grid scale pressure to the
remainder of the solution, and thus do not suffer from the problem of pressure
oscillation [3]. Figure 5 shows the layout of the standard staggered grid,
where the velocities are stored at locations offset from the pressure storage
locations in their respective directions. The staggered scheme does have a
number of disadvantages when compared to the non-staggered scheme. Each
of the velocity components and the pressure have separate control volumes,
leading to more complex coding, and additional interpolations are needed to
obtain quantities on control volume boundaries.

In contrast to the iterative non-staggered grid solvers, it has been found
that non-iterative fractional-step Navier–Stokes solvers, that is schemes in
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Figure 4: Temperature perturbation contours with time increasing left to
right.
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which the momentum/pressure equations system is only solved once at each
time step, do not require the explicit modification of the continuity equation
to ensure good performance and to prevent pressure oscillations. The non-
staggered fractional-step Navier–Stokes solver has previously been shown to
be second-order in time [8]. Here the computational efficiency and spatial
accuracy of the non-staggered grid scheme is compared directly to that of
an equivalent staggered grid scheme for the bifurcated 8:1 cavity natural
convection flow.

2 Method

The method and its accuracy are presented primarily for the non-staggered
grid scheme. The staggered grid scheme is similar and the differences are
noted below. The governing equations are the two-dimensional Navier–Stokes
equations with the Oberbeck–Boussinesq approximation for buoyancy, to-
gether with a temperature transport equation,

ut + (u · ∇)u = −∇P +
1

Re
∇2u + j

Ra

Re2Pr
τ , (1)

∇ · u = 0 , (2)

τt + (u · ∇)τ =
1

Pr Re
∇2τ , (3)

where u is the velocity, P the pressure, τ the temperature and Re the
Reynolds number. The gravity acts in the negative y direction, j = 1 in
the y momentum equation and j = 0 in the x momentum equation. The
Reynolds number Re = ŪW/ν with Ū =

√
gβW∆T , and may be written

terms of the Rayleigh and Prandtl numbers as Re =
√

Ra/Pr .

The continuous equations are discretised in time using Adams–Bashforth
for the advective terms and Crank–Nicolson for the diffusive terms; for the
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momentum and continuity equations this gives the system [9, 10]

vn+1 − vn

∆t
+

[
3

2
A(vn)− 1

2
A(vn−1)

]
= −Gpn+1/2 +

1

2Re
L(vn+1 + vn) (4)

+ j
Ra

Re2Pr
T n+1/2 ,

Dvn+1 = 0 , (5)

where (v, p, T ) are the discrete velocity, pressure and temperature respec-
tively, A is the discrete advection operator, G the discrete gradient, L the dis-
crete Laplace operator and D the discrete divergence. Second-order central-
difference discretisations are used for the operators A, G and D. Equation (4)
is a second order in time representation of equation (1) at the n + 1/2 time
location. The temperature equation is discretised in the same manner as the
momentum equations, and solved before the momentum equations at each
time step, allowing the buoyancy term in the vertical momentum equation
to be constructed from T n+1 and T n. For brevity the buoyancy term will be
dropped from equation (4) and only the momentum and associated pressure
correction equation considered in the description below.

Fractional-step methods integrate equations (4) and (5) in a segregated
manner, that is the momentum equations are first solved for the velocity, and
some form of Poisson equation is then solved for the pressure. The Poisson
equation is constructed from the momentum equation and the continuity
equation and, as well as providing the pressure, acts to enforce continuity.

In this method equation (4) is solved, using the best current value for p,
to obtain v∗, an approximation to vn+1, that is

v∗ − vn

∆t
+

[
3

2
A(vn)− 1

2
A(vn−1)

]
= −Gpn−1/2 +

1

2Re
L(v∗ + vn) , (6)

where the n− 1/2 time-level pressure is that obtained at the previous time-
step. This approximate velocity will not initially satisfy continuity. A cor-
rection is then applied of the form,

vn+1 = v∗ −∆tGπ , (7)
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where π is a pressure correction, such that the resulting vn+1 does satisfy
continuity. An equation for π is constructed by substituting equation (7)
into the continuity equation (5), to give

Lπ = Dv∗/∆t , (8)

where L = DG .

Once π is obtained, the velocity is corrected and the pressure is updated
using the pressure correction as

pn+1/2 = pn−1/2 + π . (9)

The v∗ field is then corrected as above and the integration continues to
the next time-step.

The time integration is identical and as described above for both the
staggered and non-staggered grid schemes.

2.1 Accuracy

2.1.1 Divergence error

On the non-staggered grid the discrete Poisson equation for π is(
πi+1,j − 2πi,j + πi−1,j

∆x2

)
+

(
πi,j+1 − 2πi,j + πi,j−1

∆y2

)
= (10)

1

∆t

(
U i+1/2,j − U i−1/2,j

∆x
+

V i,j+1/2 − V i,j−1/2

∆y

)∗

.

This Poisson equation has been constructed by discretising the continuous
form of equation (8) using centred second-order discretisations. On the non-
staggered grid the .i±1/2 and .j±1/2 values are obtained by linear interpolation
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from the nodal values. On the staggered grid these values are available and
no interpolation is required.

The use of the compact discretisation, given in equation (10), introduces
an error into continuity, which may be seen by substituting the corrected
form of the velocity into the continuity equation, giving(

U i+1/2,j − U i−1/2,j

∆x
+

V i,j+1/2 − V i,j−1/2

∆y

)n+1

= (11)

∆t

[(
πi+1,j − 2πi,j + πi−1,j

∆x2

)
+

(
πi,j+1 − 2πi,j + πi,j−1

∆y2

)
−(

πi+2,j − 2πi,j + πi−2,j

4∆x2

)
+

(
πi,j+2 − 2πi,j + πi,j−2

4∆y2

)]
.

The right hand side error term is the difference between compact and sparse
discretisations of the Laplace operator. The sparse discretisation has a com-
putational molecule with 2∆x, 2∆y spacing between the nodes, whereas the
compact discretisation has ∆x, ∆y spacing, as seen here. This structure re-
sults from the use of a compact Laplace operator in equation (10), and the
error may be written to second order as

−∆t
[
∆x2πxxxx + ∆y2πyyyy

]
.

Thus, using the compact Laplacian leads to an error in continuity propor-
tional to the fourth spatial derivative of the pressure correction π. Noting
that π ∼ ∆t pt means that this error is second order in time, and may be
written as

−∆t2
[
∆x2ptxxxx + ∆y2ptyyyy

]
.

The advantage of the staggered grid scheme, in comparison to the non-
staggered grid, is that when the Laplace operator for π is constructed directly
from the discrete forms of the divergence and gradient operators, a compact
discretisation is obtained which does not produce an error in continuity.

Constructing the discrete form of the Laplace operator directly from the
discrete forms of the divergence and gradient operators on the non-staggered
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grid, with centred second-order differences used for D and G, gives a sparse
discrete Laplace operator of the form,(

πi+2,j − 2πi,j + πi−2,j

4∆x2

)
+

(
πi,j+2 − 2πi,j + πi,j−2

4∆y2

)
.

The use of this sparse operator approach has been found to be inefficient and
to lead directly to the pressure oscillations observed in iterative non-staggered
schemes.

2.1.2 Velocity and pressure error

The velocity field vn+1 satisfies the following approximate form of the mo-
mentum equations:

vn+1 − vn

∆t
+

[
3

2
A(vn)− 1

2
A(vn−1)

]
= −G(pn−1/2 + π) (12)

+
∆t

2Re
LGπ +

1

2Re
L(vn+1 + vn) ,

obtained by substituting v∗ = vn+1 + ∆tGπ , from equation (7), into equa-
tion (4). Given pn+1/2 = pn−1/2 + π the term (∆t/2Re)LGπ is seen to be an
error term. This term, which cannot be written as the gradient of a scalar and
absorbed into the pressure because the L and G operators do not commute
at the boundary, contributes a second-order in time error, as π ∼ ∆t pt . This
error term exists for both staggered and non-staggered grid schemes, and the
velocity is second-order accurate in time for both schemes [8, 9, 10, 11].

No explicit equation is solved for the pressure; however, it will satisfy the
equation obtained by taking the divergence of equation (12); on the non-
staggered grid this gives

(pi+2,j − 2pi,j + pi−2,j)n+1/2

4∆x2
+

(pi,j+2 − 2pi,j + pi,j−2)n+1/2

4∆y2
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= −D

[
3

2
A(vn)− 1

2
A(vn−1)− ∆t

2Re
LGπ

]
(13)

+ ∆t2
[
∆x2pxxxx + ∆y2pyyyy

]
tt
− 1

Re
L∆t2

[
∆x2pxxxx + ∆y2pyyyy

]
t
.

The use of centred difference schemes for the divergence and gradient op-
erators on a non-staggered grid produces the sparse Laplace operator for
pressure shown here. The (∆t/2Re)LGπ term on the second line is a sec-
ond order in time error term resulting from the use of the fractional-step
method, whereas the terms on the third line are a result of the error shown
in equation (11). When an iterative scheme is used the momentum/Poisson
π equations system is iterated until π becomes small, the relation pt = π no
longer holds and these terms are negligible. The fourth derivative of pressure
error terms act to limit the growth of grid-scale error in the pressure field,
ensuring that the non-iterative scheme is well behaved when the identical
scheme, solved in iterative form, behaves poorly. These error terms are all
second-order and the pressure is therefore second-order accurate in time at
time location n + 1/2. Note that some care must be taken to demonstrate
this second-order behaviour, taking into account the ∆t/2 difference in the
location of the pressure and velocities [11].

The implied pressure equation for the staggered grid scheme, equivalent
to equation (14), has a compact Laplace operator for pressure and does not
include the error terms on the third line of (14).

2.1.3 Boundary condition error

Both the U and V velocity components are fixed at a solid wall and the
average of the values at the immediate interior and exterior nodes is set to
the required value. Because the normal component of velocity is known at
the boundary no correction is required to the ∗ field there, and therefore
the normal gradient of π is set to zero at the boundary. The boundary
conditions for the ∗ velocity field are set to be the same as the physical
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boundary conditions, given above. For the non-staggered scheme the normal
momentum equation at the immediate interior node requires the pressure
at the immediate exterior node. This value is obtained using a fifth order
extrapolation from the interior. The boundary extrapolation required for the
pressure on the non-staggered grid introduces an additional error component
to the order of the extrapolation. The error leads to an error in the velocity
of order ∆t times the order of the extrapolation times the grid-scale squared.
For high order extrapolation this error is likely to be negligible.

3 Results and discussion

Results have been obtained for Ra = 3.4 × 105 and Pr = 0.71 on two grids.
Details of the grids, stretching and time-step are given in Table 1. For each
of the grids the smallest mesh is located adjacent to the solid boundaries, and
the mesh is stretched away from the boundary with the stretching rate given.
The stretching factor is then progressively reduced giving a uniform grid in
the interior of the domain. The flow is initialised with a zero velocity and
temperature. At time t = 0 the left and right walls are impulsively heated and
cooled to temperatures of 0.5 and −0.5 respectively and the flow is allowed to
develop. By time t = 500 the start up transients have decayed and the time-
series show an oscillatory signal. The momentum and temperature equations
are solved using an adi scheme while the Poisson π equation is solved using
a restarted gmres method. The momentum and temperature equations are
converged when the absolute residual of the equations, integrated over the
domain, is less than 1×10−8. The π equation is converged when the absolute
residual, integrated over the domain, is less than 1× 10−4.

The results obtained with the staggered and non-staggered grid schemes
and the benchmark results, from [2], are shown in Table 2 in the form of
the average, period and amplitude of the temperature time series at location
x = 0.181 , y = 7.37 (shown as the • on Figure 1) for the fully developed
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Table 1: Grid details
Grid ∆x, ∆y at wall Stretching ∆t
G1 451× 653 0.000625, 0.00125 1.0175 0.005
G2 211× 311 0.00125, 0.0025 1.035 0.01

Table 2: Time series results for temperature at x = 0.181 , y = 7.37
Average Period Amplitude

Spectral [2] 0.265480 3.41150 0.042740
Staggered G1 0.265485 3.41402 0.043195
Staggered G2 0.265538 3.42347 0.043918
Non-Staggered G1 0.265490 3.41326 0.043475
Non-Staggered G2 0.265552 3.41869 0.045448

flow. The errors for the staggered and non-staggered scheme results, with
respect to the benchmark results, are shown in Table 3. In absolute terms
the difference in accuracy between the staggered and non-staggered schemes
is very small. Comparing the results on the G2 grid, the non-staggered
scheme is more accurate for the period, while the staggered scheme is more
accurate for the amplitude, suggesting that the staggered scheme has a larger
dispersive error and the non-staggered scheme has a larger diffusive error.
Both schemes give very similar results for the average.

The non-staggered scheme displays second-order convergence for the pe-
riod and the amplitude, whereas the staggered scheme displays second-order

Table 3: Error results for temperature, x = 0.181 , y = 7.37
Average Period Amplitude

Staggered G1 5× 10−6 0.00252 0.000455
Staggered G2 5.8× 10−5 0.01197 0.001178
Non-Staggered G1 1× 10−5 0.00176 0.000735
Non-Staggered G2 7.2× 10−5 0.00719 0.002718



3 Results and discussion C932

convergence for the period only. The errors in the average, particularly on
the G1 grid, are very small and close to the accuracy with which the bench-
mark result is presented, and this may be affecting the observed behaviour
for this quantity.

Computation times for the two schemes are very similar. On a Pentium 4
with 500Mbytes of PC2800 ddr memory, execution time for the staggered
scheme on grid G2 is 0.805 seconds/time-step, while for the non-staggered
scheme it is, 0.836 seconds/time-step. On the G1 grid execution time for the
staggered scheme is 3.54 seconds/time-step and for the non-staggered scheme
it is 3.44 seconds/time-step.

4 Conclusions

In summary, the accuracy and efficiency of the staggered and non-staggered
grid schemes are very similar. In particular, note that the good performance
of the non-staggered grid scheme is obtained without the inclusion of explicit
correction terms into the continuity equation, as is required for iterative
schemes. The error that automatically results from using a non-iterative
fractional-step method performs the same function as the correction terms
do in the iterative scheme, effectively coupling the grid-scale pressure into
the remainder of the solution and ensuring the non-staggered scheme has
approximately the same performance as the staggered scheme.
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