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Algorithms for the recovery of Kohlrausch
parameters from viscoelastic stress-strain data
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Abstract

The Boltzmann model of linear viscoelasticity is an appropriate
model for materials that simultaneously exhibit viscous and elastic
behaviour, such as synthetic and natural polymers. The nature of the
viscoelasticity is encapsulated in terms of the structure of its kernel
function (the relaxation modulus) G(t). Husain and Anderssen (2005)
proposed a procedure for approximating G(t), based on taking mo-
ments of the Boltzmann equation with G(t) the sum of Kohlrausch
functions. The shortcoming of this proposal is the need to evaluate
the moments on the half-interval [0,∞). We propose a method which
takes the strain-rates to have a polynomial form and G(t) to be a sum
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of Kohlrausch functions. It yields methods for the direct estimation
of the parameters in Kohlrausch models for G(t).
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1 Introduction

The Boltzmann model of linear viscoelasticity is

σ(t) =

∫ t

0

G(t− τ)γ̇(τ) dτ , (1)

where

σ(t) := stress at time t,

G(t) := the relaxation modulus,

γ(t) := the strain,

γ̇(t) := dγ/dt , the strain rate,

τ := the relaxation time.

The nature of the material under investigation (for example, synthetic and
biopolymers, bone, collagen) is encapsulated in the form of the relaxation
modulus G(t) which, in order to guarantee sensible physics, is normally cho-
sen to be completely monotone. The traditional strategy for guaranteeing
that any approximation to G(t) is a complete monotone function, has been
to solve the oscillatory shear rheometry equations with

G(t) =

∫ ∞

0

exp(−t/τ)
H(τ)

τ
dτ , H(τ) ≥ 0 ,

where H(τ) denotes the corresponding relaxation time spectrum. With re-
spect to the measured storage and loss modulus data, the algorithm solves
the corresponding equations for H(τ) and then substitutes this estimate into
the relaxation spectrum equation for G(t) (Davies and Anderssen [7]).

Husain and Anderssen [11] recently showed how moments of the Boltz-
mann model of linear viscoelasticity can be evaluated analytically when the
kernel (relaxation modulus) G(t) is approximated as a sum of Kohlrausch
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functions. These results were then used to derive simple hybrid analytic-
numerical algorithms for the estimation of the unknown parameters in the
chosen Kohlrausch function model. The immediate appeal of the resulting
algorithms related to: their ease of implementation; the evaluation of the re-
quired moments can be performed in a stable manner; and one only needs as
many moments of the stress (and corresponding moments of the strain-rate)
as the number of parameters in the Kohlrausch function approximation.

The advantage of this method is that it applies for a more or less ar-
bitrary choice for the strain-rate, and leads to a quite simple algorithm for
the recovery of the Kohlrausch parameters. Its potential disadvantage is
that the moments must be evaluated on the half-interval [0,∞). This lim-
its its applicability because, in an experiment, the stress is only available
as measurements at a discrete set of points. Either, for a given strain-rate,
an experiment must be performed until the measured stress has effectively
reached zero, or a specific strain-rate must be chosen which guarantees that
the stress will have essentially reached zero before the measurement of the
stress is halted.

In this paper, alternative methods are proposed which circumvents the
need to evaluate moments on the half interval [0,∞) by restricting attention
to a special sub-class of strain-rates which have a polynomial structure and
are defined on some compact interval [0, a] . From a practical rheological
perspective, the advantages of this alternative approach include:

1. such strain-rates are important as they have the type of form suitable
for an actual rheometry experiment;

2. they yield an analytic model for the stress, to be fitted to the measured
stress to yield a more appropriate assessment of the actual stress;

3. they yield analytic models for the moments that can be exploited to
directly recover an estimate of the Kohlrausch parameters.
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2 Preliminaries and notation

The Boltzmann equation (1) models how the stress σ(t), at time t, depends
on the earlier history of the strain γ(t) and strain rate γ̇(τ) [6]. In the
formulation of a Boltzmann model, the key consideration is the choice of the
relaxation modulus G(t). The regularity imposed on G(t) is such that it
must have a fading memory. A popular choice [5, 8] is to assume that G(t) is
completely monotone [9, 14].

The Kohlrausch function is often referred to as the Kohlrausch–Williams–
Watts function to recognise the important contribution of Graham Williams
and David Watts in 1970 [15] in identifying the role that this function could
play in modelling various forms of physical, chemical and polymeric relax-
ation processes. It also recognises the subsequent huge impact of that and
other related papers. A review of the extent and significance of this im-
pact, as well as the original papers by Williams and colleagues, is found in
Williams [16].

2.1 Kohlrausch functions

One of the possible choices for a completely monotone G(t) is the Kohlrausch
(stretched exponential; Williams–Watts) function [2, 3, 9, 10]

Kτ`,β`
(t) = exp(−(t/τ`)

β`) , 0 < β < 1 , ` = 1, 2, . . . , L . (2)

The Kohlrausch function also proved to be more appropriate in modelling
the associated relaxation and decay processes than the standard exponential
function. Further details about the key properties of the Kohlrausch func-
tions and the merits of using the Kohlrausch function can be found in [4].
Kohlrausch in 1854 [13] proposed using the above expression (2) as a relax-
ation function for dynamical processes in materials in the study of creep in
electric displacements. In order to allow for a more general choice of the
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relaxation modulus G(t), we assume that G(t) is a sum of the Kohlrausch
functions:

GL(t) =
L∑

`=1

k`Kτ`,β`
(t) , (3)

where the β` and the τ` correspond to the Kohlrausch exponents and relax-
ation times.

2.2 Incomplete Gamma function

Let Φx(s) denote the lower incomplete gamma function [1]:

Φx(s) =

∫ x

0

ts−1 exp(−t) dt . (4)

2.3 Feng Qi inequality

For the subsequent analysis, the following inequality of Feng Qi [12] is re-
quired.

Let g(t) be a locally integrable positive function on the interval between
x and y, x, y ∈ R , such that exp(t)g(t) is decreasing, then

Φx(s)

Φx(r)
≥
∫ x

0
ts−1g(t) dt∫ x

0
tr−1g(t) dt

(5)

holds for s > r > 0 and x > 0 . If exp(t)g(t) is increasing, then the above
inequality reverses.

2.4 Inequality for incomplete Gamma function ratios

For the subsequent analysis, the following proposition is required.
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Proposition 1 For fixed τ1, n ∈ R, n > 1 ,

ΦT (β1,τ1)(
n
β1

)

T (β1, τ1)n/β1−1ΦT (β1,τ1)(1)
< 1 . (6)

Proof: One exploits the Feng Qi Inequality given in the Subsection 2.3.
For s = n/β1 and r = 1 , g(t) = t is an integrable positive function on the
interval between 0 and T (β1, τ1) because∫ T (β1,τ1)

0

t dt = T 2(β1, τ1)/2 < ∞ , (7)

and, consequently, exp(t)g(t) = t exp(t) is increasing. For this choice, the
inequality yields

ΦT (β1,τ1)(
n
β1

)

ΦT (β1,τ1)(1)
≤ 2β1

(β1 + n)
T (β1, τ1)

n/β1−1 . (8)

Finally, dividing both sides of inequality (8) by T (β1, τ1)
n/β1−1 yields

ΦT (β1,τ1)(
n
β1

)

T (β1, τ1)n/β1−1ΦT (β1,τ1)(1)
≤ 2β1

(β1 + n)
. (9)

Since 0 < β1 < 1 , then 1/β1 > 1 . Hence

2β1

(β1 + n)
=

2

(1 + n/β1)
< 1 . (10)

Therefore, one obtains the inequality (6). ♠

2.5 The Boltzmann model for strain-rates defined on
a finite interval

Without loss of generality, assume that the finite interval is the unit inter-
val [0, 1], and that γ(t) = ϕ(t)H(t−1) , where H(t−1) denotes the Heaviside
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step function. It follows that γ̇(t) = ϕ̇(t)H(t−1)+ϕ(t)δ(t−1) , where δ(t−1)
denotes the Dirac Delta function. Substitution of this result into equation (1)
yields

σ(t) =

∫ t

0

G(t− τ){ϕ̇(τ)H(τ − 1) + ϕ(τ)δ(τ − 1)} dτ . (11)

Some algebraic manipulation, using the properties of H(τ − 1) and δ(τ − 1),
of equation (11) yields

σ(t) =

{∫ t

0
G(t− τ)ϕ̇(τ) dτ , 0 ≤ t < 1 ,∫ 1

0
G(t− τ)ϕ̇(τ) dτ + G(t− 1)ϕ(1) , t ≥ 1 .

(12)

If ϕ(1) = 0 , equation (12) becomes

σ(t) =

{∫ t

0
G(t− τ)ϕ̇(τ) dτ , 0 ≤ t < 1 ,∫ 1

0
G(t− τ)ϕ̇(τ) dτ , t ≥ 1 .

(13)

3 The stress and derivative of stress for

polynomial strain-rates

Proposition 2 For γ̇(t) = ctp ,

σL(t) = c
L∑

`=1

k`

∫ t

0

Kτ`,β`
(t− τ)τ p dτ (14)

= c

L∑
`=1

k`τ`

β`

[
p∑

i=0

C̃
(`)
i ΦT (β`,τ`)

(
p− i + 1

β`

)]
, (15)

where

C̃
(`)
i =

(
p

i

)
ti(−τ`)

p−i . (16)
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Proof: Substituting equation (3) into equation (1) gives

σL(t) =
L∑

`=1

k`

∫ t

0

Kτ`,β`
(t− τ)γ̇(τ) dτ . (17)

Substitution of γ̇(t) = ctp into equation (17) yields equation (14). The
substitution φ = ((t− τ)/τ`)

β` into equation (17) yields

σL(t) = c
L∑

`=1

k`τ`

β`

[
p∑

i=0

C̃
(`)
i

∫ (t/τ`)
β`

0

φ(p−i+1)/β`−1 exp(−φ) dφ

]
, (18)

where C̃
(`)
i =

(
p
i

)
ti(−τ`)

p−i .

One now uses∫ T (β`,τ`)

0

φ(p−i+1)/β`−1 exp(−φ) dφ = ΦT (β`,τ`)

(
p− i + 1

β`

)
,

where T (β`, τ`) = (t/τ`)
β` , to obtain equation (17). ♠

Proposition 3 For γ̇(t) = ctp , the derivative of the stress

σ̇L(t) =
L∑

`=1

k`c

[
tp −

p∑
i=0

C̃
(`)
i ΦT (β`,τ`)

(
p− i + β`

β`

)]
. (19)

Proof: Differentiating σL(t), that is, equation (17), with respect to time t,
yields

σ̇L(t) =
L∑

`=1

k`

(
γ̇(t)− β`

τβ`

`

∫ t

0

(t− τ)β`−1 exp(−((t− τ)/τ`)
β`)γ̇(τ) dτ

)
.

(20)
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To evaluate

I =

∫ t

0

(t− τ)β`−1 exp(−((t− τ)/τ`)
β`)γ̇(τ) dτ , (21)

one uses the substitution φ = ((t− τ)/τ`)
β` and γ̇(t) = ctp into equation (21)

to obtain

I = c
τβ`

`

β`

p∑
i=0

C̃
(`)
i

∫ (t/τ`)
β`

0

φ(p−i+β`)/β`−1 exp(−φ) dφ , (22)

= c
τβ`

`

β`

p∑
i=0

C̃
(`)
i ΦT (β`,τ`)

(
p− i + β`

β`

)
. (23)

Finally, the substitution of equation (23) into equation (20) yields equa-
tion (19). ♠

4 The moments of the stress for polynomial

strain-rates

For polynomial strain-rates, finite moments of the stress can be evaluated
analytically. For fixed 0 ≤ T̄ < ∞ , the moments of the stress σL(t) are

M (L)
m =

∫ T̄

0

tmσL(t) dt =
L∑

`=1

k`

∫ T̄

0

tm
[∫ t

0

Kτ`,β`
(t− τ)γ̇(τ) dτ

]
dt . (24)

Proposition 4 For a strain-rate γ̇(t) = ctp , where p is a positive integer
and c is a positive constant,

M (L)
m = c

L∑
`=1

k`τ`

β`

m∑
i=0

(
m

i

)
τ i
`

∫ T̄

0

Φ ¯̄T

(
i + 1

β`

)
τ p+m−i dτ . (25)
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Proof: To prove Proposition 4, one starts with equation (14). Multiplying
expression (17) by the monomial tm, where m ≥ 0 is an integer, and then
integrating the resulting expression from 0 to T̄ generates the moments of
the stress given by (24). Changing the order of integration yields

M (L)
m =

L∑
`=1

k`

∫ T̄

0

[∫ T̄

τ

tmKτ`,β`
(t− τ) dt

]
γ̇(τ) dτ . (26)

To evaluate

I =

∫ T̄

τ

tmKτ`,β`
(t− τ) dt ,

use the substitution u = t− τ to obtain

I =

∫ T̄

0

(u + τ)mKτ`,β`
(u) du

=

∫ T̄

0

m∑
i=0

(
m

i

)
uiτm−i exp(−(u/τ`)

β`) du .

(27)

The substitution of φ = (u/τ`)
β` into equation (27) yields

I =
τ`

β`

m∑
i=0

(
m

i

)
τ i
`τ

m−i

∫ ((T̄−τ)/τ`)
β`

0

φ(i+1)/β`−1 exp(−φ) dφ . (28)

One now uses∫ ¯̄T

0

φ(i+1)/β`−1 exp(−φ) dφ = Φ ¯̄T

(
i + 1

β`

)
, ¯̄T =

(
T̄ − τ

τ`

)β`

, (29)

to obtain

I =
τ`

β`

m∑
i=0

(
m

i

)
τ i
`τ

m−iΦ ¯̄T

(
i + 1

β`

)
. (30)

Finally, the substitution of equation (30) into equation (26) yields

M (L)
m =

L∑
`=1

k`τ`

β`

m∑
i=0

(
m

i

)
τ i
`

∫ T̄

0

Φ ¯̄T

(
i + 1

β`

)
τm−iγ̇(τ) dτ . (31)
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Substitute the strain rate γ̇(t) = ctp to yield equation (25). Using integration
by parts, the following form of equation (25) can be derived (the derivation
of the moments are omitted, since the construction of moments are not our
mathematical focus):

M (L)
m =

L∑
`=1

k`τ`

β`

m∑
i=0

(
m

i

)
τ i
`

¯̄K

p+m+1−i∑
n=0

¯̄CnΦT̄

(
p + m + 2− n

β`

)
, (32)

where ¯̄K = −c/(p + m− i + 1) and ¯̄Cn =
(

p+m+1−i
n

)
T̄ n(−τ`)

p+m+1−i−n . ♠

Corollary 5 For γ̇(t) = c(tp−1(1 − tq))H(t − 1) , where p, q are positive
integers and c is a positive constant, it follows from (25) and (12) that

M (L)
m = c

L∑
`=1

k`τ`

β`

m∑
i=0

(
m

i

)
τ i
`

∫ T̄

0

Φ ¯̄T

(
i + 1

β`

)
(τ p−1 − τ p+q−1)τm−i dτ , (33)

for T̄ < 1 , and

M (L)
m = c

L∑
`=1

k`τ`

β`

m∑
i=0

(
m

i

)
τ i
`

∫ 1

0

ΦT̂

(
i + 1

β`

)
(τ p−1 − τ p+q−1)τm−i dτ , (34)

for T̄ ≥ 1 .

5 Analytic expression for stress for the

single Kohlrausch (L = 1) when

γ̇(t) = ctp−1(1− tq)H(t− 1)

Using equation (13) and Proposition 2, the analytic expression for stress for
the Single Kohlrausch function (L = 1) when γ̇(t) = c(tp−1(1− tq))H(t− 1) ,
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is

σ∗1(t) = c
k1τ1

β1

[
p−1∑
i=0

C̃
(1)
i ΦT (β1,τ1)

(
p− i

β1

)
−

p̂−1∑
i=0

Ĉ
(1)
i ΦT (β1,τ1)

(
p̂− i

β1

)]
,

(35)
for 0 ≤ t < 1 , and

σ∗∗1 (t) = c
k1τ1

β1

[W̃p(τ1, β1)− Ŵp̂(τ1, β1)] , (36)

for t ≥ 1 , where p̂ = (p + q) ,

C̃
(1)
i =

(
p− 1

i

)
ti(−τ1)

p−i−1 ,

Ĉ
(1)
i =

(
p̂− 1

i

)
ti(−τ1)

p̂−i−1 ,

W̃p(τ1, β1) =

p−1∑
i=0

C̃
(1)
i

∫ (t/τ1)β1

((t−1)/τ1)β1

φ(p−i)/β1−1 exp(−φ) dφ ,

Ŵp̂(τ1, β1) =

p̂−1∑
i=0

Ĉ
(1)
i

∫ (t/τ1)β1

((t−1)/τ1)β1

φ(p̂−i)/β1−1 exp(−φ) dφ .

The derivative of stress for the Single Kohlrausch function is

σ̇∗1(t) = ck1

[
tp−1(1− tq)− {J̃p(τ1, β1)− Ĵp̂(τ1, β1)}

]
. (37)

where

J̃p(τ1, β1) =

p−1∑
i=0

C̃
(1)
i ΦT (β1,τ1)

(
p− i + (β1 − 1)

β1

)
,

Ĵp̂(τ1, β1) =

p̂−1∑
i=0

Ĉ
(1)
i ΦT (β1,τ1)

(
p̂− i + (β1 − 1)

β1

)
,
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for 0 ≤ t < 1 , and

σ̇∗∗1 (t) = ck1

[
tp−1(1− tq)− {W̄p(τ1, β1)− ¯̄Wp̂(τ1, β1)}

]
. (38)

where

W̄p(τ1, β1) =

p−1∑
i=0

C̃
(1)
i

∫ (t/τ1)β1

((t−1)/τ1)β1

φ(p−i+β1−1)/β1−1 exp(−φ) dφ ,

¯̄Wp̂(τ1, β1) =

p̂−1∑
i=0

Ĉ
(1)
i

∫ (t/τ1)β1

((t−1)/τ1)β1

φ(p̂−i+β1−1)/β1−1 exp(−φ) dφ ,

for t ≥ 1 .

5.1 Recovery of Kohlrausch parameters: single
Kohlrausch

Husain and Anderssen [11] recently established theoretically how the un-
known parameters (that is, k`, β`, τ`, ` = 1, 2, . . . , L) in such models can be
recovered using moments of the measured stress, and of the corresponding
known applied strain rates. For the single Kohlrausch situation where L = 1 ,
the algebraic relationships for the three moments of both the measured stress
and the applied strain-rate can be rearranged to yield a strictly monotone
formula for β1, an explicit formula for τ1 in terms of β1, and an explicit for-
mula for k1 in terms of τ1 and β1 . Together, they yield an existence and
uniqueness proof for the parameters β1, τ1 and k1.

Here, the above results are used to propose some alternative methods.
They exploit the fact that, for arbitrary t, analytic expressions σ∗1(t) and σ̇∗1(t)
are known functions involving the unknowns k1, β1 and τ1 . Three possible
alternatives follow.
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1. Choose a set of specific values of t at which σ∗1(t) and σ̇∗1(t) are evaluated
and use the resulting algebraic expressions to construct algorithms for
the estimation of β1, τ1 and k1 . This is illustrated below.

2. For a large set of t values on an appropriate even grid, construct the
corresponding overdetermined system of equations, which is then solved
using an appropriate non-linear least squares algorithm.

3. In order to construct interesting algebraic formulas which could, after
appropriate algebraic manipulation, yield simple algorithms for the es-
timation of β1, τ1 and k1, utilise the algebraic expressions for σ∗1(t),
σ̇∗1(t), etc., for different choices for the above polynomial strain-rates
(that is, for different values of c, p and q).

To illustrate, examine the alternative 1. Consider the situation where L = 1 ,
p = 2 and q = 1 . Then equations (35) and (37) become

σ∗1(t) = c
k1τ1

β1

[
P1(t)ΦT ∗

t

(
1

β1

)
+ τ1P2(t)ΦT ∗

t

(
2

β1

)
− τ 2

1 ΦT ∗
t

(
3

β1

)]
, (39)

and

σ̇∗1(t) = ck1

[
P0(t)−

[
P1(t)ΦT ∗

t
(1) + τ1P2(t)ΦT ∗

t

(
1 + β1

β1

)
− τ 2

1 ΦT ∗
t

(
2 + β1

β1

)]]
, (40)

where T ∗t = T (τ1, β1) , P0(t) = t(1− t) , P1(t) = (t− t2) and P2(t) = (2t− 1) .

These two equations involve the three unknowns k1, β1 and τ1. The
aim then is to determine various specific values for t such that the resulting
equations can be combined to break the confounding involving k1, β1 and τ1.

For example, if one chooses t = 1/2 , then equations (39) and (40) become

σ∗1

(
1

2

)
= c

k1τ1

β1

[
1

4
ΦT ∗

1/2

(
1

β1

)
− τ 2

1 ΦT ∗
1/2

(
3

β1

)]
, (41)
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Figure 1: Plot of F1(τ1, β1) as a function of β1 with t = 0.5 and τ1 = 0.25 .

σ̇∗1

(
1

2

)
= ck1

[
1

4
(1− ΦT ∗

1/2
(1)) + τ 2

1 ΦT ∗
1/2

(
2 + β1

β1

)]
. (42)

Dividing (41) by (42), one obtains

F1(τ1, β1) =

τ1
4
ΦT ∗

1/2
(1/β1)− τ 3

1 ΦT ∗
1/2

(3/β1)

β1

[
1
4
(1− ΦT ∗

1/2
(1)) + τ 2

1 ΦT ∗
1/2

(
2+β1

β1

)] = A1 , (43)

where A1 = σ∗1
(

1
2

)
/σ̇∗1

(
1
2

)
is known.

Using Proposition 1 and other algebraic identities (see Appendix A), it



5 Analytic expression for stress for the single Kohlrausch C951

can be proved that, for fixed τ1 > 0 , and 1
β1

> 1, F1(τ1, β1) is a decreasing
function of β1. Figure 1 illustrates this monotonic decrease.

So, for a given τ1, one can estimate the parameter β1. If necessary, one
then uses this value for β1 to improve the value of τ1 and continue the process
iteratively until convergence. Equation (43) then determines k1. Clearly,
there are other ways in which equation (43) can be solved numerically to
derive estimates of β1, τ1 and k1.

A Monotonicity of F1(τ1, β1)

Let

F1(τ1, β1) =
τ1ΦT ∗

1/2
(1/β1)− 4τ 3

1 ΦT ∗
1/2

(3/β1)

β1

[
1− ΦT ∗

1/2
(1) + 4τ 2

1 ΦT ∗
1/2

(
2+β1

β1

)] , (44)

where F1(τ1, β1) = σ∗1
(

1
2

)
/σ̇∗1

(
1
2

)
is known and T ∗1/2 = (1/2τ1)

β1 .

Let

u = τ1ΦT ∗
1/2

(
1

β1

)
− 4τ 3

1 ΦT ∗
1/2

(
3

β1

)
, (45)

v = β1

[
1− ΦT ∗

1/2
(1) + 4τ 2

1 ΦT ∗
1/2

(
2 + β1

β1

)]
. (46)

Differentiating u with respect to T ∗1/2 yields

du

dT ∗1/2

= τ1 exp(−t)T
∗1/β1−1
1/2

[
1− 4τ 2

1 T
∗2/β1

1/2

]
. (47)

Since T
∗2/β1

1/2 = 1/4τ 2
1 , hence one obtains

du

dT ∗1/2

= 0 . (48)
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Differentiating v with respect to T ∗1/2 yields

dv

dT ∗1/2

=
1

T ∗1/2 log(T ∗1/2)

[
1− ΦT ∗

1/2
(1) + 4τ 2

1 ΦT ∗
1/2

(
2 + β1

β1

)]
. (49)

Hence, differentiating F1(τ1, β1) with respect to T ∗1/2 , one obtains

dF1(τ1, β1)

dT ∗1/2

= −u
dv/dT ∗1/2

v2
. (50)

Proposition 6

−1 + ΦT ∗
1/2

(1)− 4τ 2
1 ΦT ∗

1/2

(
2 + β1

β1

)
< 0 . (51)

Proof: Equation (51) can be written as

−1+ΦT ∗
1/2

(1)−4τ 2
1 ΦT ∗

1/2

(
2 + β1

β1

)
= −1+ΦT ∗

1/2
(1)

1− 4τ 2
1

ΦT ∗
1/2

(
2+β1

β1

)
ΦT ∗

1/2
(1)

 .

(52)
Since from Proposition 1, it can be shown that

ΦT ∗
1/2

(
2+β1

β1

)
T
∗ 2+β1

β1
−1

1/2 ΦT ∗
1/2

(1)

= 4τ 2
1

ΦT ∗
1/2

(
2+β1

β1

)
ΦT ∗

1/2
(1)

< 1 . (53)

and
ΦT ∗

1/2
(1) = 1− exp(−T ∗1/2) < 1 , (54)

Hence, one obtain inequality (51). ♠

Proposition 7

u = τ1ΦT ∗
1/2

(
1

β1

)
− 4τ 3

1 ΦT ∗
1/2

(
3

β1

)
> 0 . (55)
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Proof: Equation (55) can be written as

u = τ1ΦT ∗
1/2

(
1

β1

)[
1− 4τ 2

1

ΦT ∗
1/2

(3/β1)

ΦT ∗
1/2

(1/β1)

]
. (56)

To prove Proposition B, one exploits the Feng Qi Inequality given in the
Subsection 2.3. For s = 3/β1 and r = 1/β1 , g(t) = t , is an integrable
positive function on the interval between 0 and T ∗1/2 , because∫ T ∗

1/2

0

t dt = T ∗21/2/2 < ∞ , (57)

and, consequently, exp(t)g(t) = t exp(t) is increasing. For this choice, the
inequality yields

ΦT ∗
1/2

(3/β1)

ΦT ∗
1/2

(1/β1)
≤
(

3 + β1

1 + β1

)
T
∗2/β1

1/2 =
1

4τ 2
1

(
1− 2

β1 + 3

)
. (58)

Since 0 < β1 < 1 , hence

4τ 2
1

ΦT ∗
1/2

(3/β1)

ΦT ∗
1/2

(1/β1)
≤ 1 . (59)

This implies inequality (55). ♠

Proposition 8 F1(τ1, β1) is either strictly increasing or decreasing function
of β1, depending on the fixed value of τ1.

Proof: Depending on the fixed value of τ1, and consequently the sign of
log(T ∗1/2) , from (49)

dv

dT ∗1/2

{
> 0 , if log(T ∗1/2) > 0 ,

< 0 , if log(T ∗1/2) < 0 .
(60)
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Therefore, this implies

dF1(τ1, β1)

dT ∗1/2

< 0 , if dv
dT ∗

1/2
> 0 ,

> 0 , if dv
dT ∗

1/2
< 0 .

(61)

♠
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