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Effect of turbulence on zonal jet flows in
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Abstract

The linear stability of zonal flows superposed upon a sinusoidal,
slightly supercritical background flow in an equivalent-barotropic quasi-
geostrophic model on a β plane is investigated using asymptotic analysis.
Consistent with results of full numerical simulations, all the steady
isolated zonal jet solutions were found to be linearly unstable, and
specifically, the mode independent of longitudinal direction was found
to be most unstable, even when the amplitude equation of the zonal
flows has longitudinal dependence.
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1 Introduction

It is well known that in forced two-dimensional turbulence on a rotating
sphere, a multiple zonal-band structure, i.e., a structure with alternating
eastward and westward jets, develops in time [1, 2]. Then, for example,
in the case of the two-dimensional barotropic model, the multiple zonal-
band structure experiences intermittent mergers and disappearances of zonal
jets [1]. With the view to understanding such behaviour of zonal flows in two-
dimensional barotropic turbulence in rotating systems, Manfroi and Young [3]
considered large-scale zonal flow superposed upon a homogeneous zonal flow
and a small-scale sinusoidal transverse flow on a β plane, and derived a
longitude-independent amplitude equation for zonal flows. Obuse et al. [4]
then obtained analytical steady isolated zonal jet solutions of Manfroi and
Young’s model, and investigated their linear stability. They found that the
instability of the zonal jet solutions and the temporal development of the
instability are consistent with the disappearance of zonal jets seen in full
numerical simulations of the two-dimensional barotropic model on rotating
spheres. This suggests that although Manfroi and Young’s equation is a highly
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simplified model of a zonal flow under the influence of zonal flow–turbulence
interaction, it captures many fundamental dynamics of zonal flows in two-
dimensional turbulence on a rotating sphere and a β plane. Hence, in this
paper we consider the equivalent-barotropic quasi-geostrophic model, where
the surface variation of the fluid layer is included in the two-dimensional
barotropic system. Then we extend Manfroi and Young’s model, to investigate
the linear stability of zonal jets.

2 Amplitude equation and steady solution

We consider zonal flows superposed upon a small-scale sinusoidal transverse
flow in an equivalent-barotropic quasi-geostrophic model, and follow the
asymptotic analysis of Manfroi and Young [3], to derive an amplitude equation
for zonal flows.

In the derivation of the amplitude equation of zonal flows [3, equation (4.1)],
Manfroi and Young only considered a longitude-independent leading order
stream function perturbation. In reality, zonal jets in the forced equivalent-
barotropic quasi-geostrophic model are governed by two-dimensional equations.
Therefore, we consider when the stream function is longitude-dependent.

The dynamics of incompressible flow in the forced equivalent-barotropic
quasi-geostrophic model are described by the vorticity equation

Zt + J(Ψ,Z) + βΨx −
1

L2d
Ψt = F+ ν∇2Z. (1)

Here t is the time, Ψ is the stream function, Z = ∇2Ψ is the vorticity, F is the
vorticity forcing function, ν is the kinematic viscosity coefficient, and β is the
beta parameter. We have also introduced the Rossby radius of deformation
Ld = gH/f20, where g is the magnitude of gravitational acceleration, H is
the width of the zonal channel, and f0 is the Coriolis parameter at the
reference latitude, respectively. The Jacobian operator is defined as J(A,B) =
(∂A/∂x)(∂B/∂y) − (∂A/∂y)(∂B/∂x) , and ∇ = (∂/∂x,∂/∂y) .
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We consider the same situation as Manfroi and Young [3], i.e., a steady
sinusoidal base flow with the velocity

(uB, vB) =

(
−
∂ΨB

∂y
,
∂ΨB

∂x

)
= (UB,mΨB0 sinmx),

which is driven by a suitable forcing function, where ΨB , uB and vB are the
stream function, x and y velocity components of the base flow, respectively.
The parameters UB and ΨB0 are constant, and m is an integer. We also
assume the Reynolds number of the base flow to be R = ΨB0/ν = Rc(1+ ε

2) .
Here, Rc is the critical Reynolds number, and ε is a small quantity. Then
we write the total stream function of the flow as Ψ = ΨB(x,y) +ψ(x,y, t) ,
where ψ(x,y, t) is the perturbation stream function.

We first introduce dimensionless variables defined as

(x̂, ŷ) = (mx,my), t̂ = tm2ν, ψ̂ =
ψ

ν
, ûB =

uB

mν
, β̂ =

β

m3ν
, (2)

then the stream function of the disturbance flow satisfies a non-dimensionalised
equation

∂ζ̂

∂t̂
+ ûB

∂ζ̂

∂x̂
+ R

(
∂ζ̂

∂ŷ
+
∂ψ̂

∂ŷ

)
sin x̂+ J(ψ̂, ζ̂) + β̂

∂ψ̂

∂x̂
−

1

L2d

∂ψ̂

∂t̂
= ∇̂2ζ̂ , (3)

where ζ̂ = ∇̂2ψ̂ is the vorticity of the disturbance flow. Hereafter, we drop
the notation ˆ for the dimensionless variables and operators for simplicity.

Following Manfroi and Young [3], we then define1

η = εy, τ = ε4t, ξ = ε6x. (4)
1The scaling of η and τ are chosen from the discussion for the band width of unstable

wavenumbers and the growth rate of the instability of sinusoidal shear flow considered as
a part of background flow, respectively. The scaling of ξ is chosen so that the maximum
number of physical processes appear in the final amplitude equation for the perturbation [3].
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Now we perform a perturbation expansion
ψ = ψ0 + εψ1 + ε

2ψ2 + · · · , UB = UB0 + εUB1 + ε
2UB2 + · · · ,

β = β0 + εβ1 + ε
2β2 + · · · ,

1

Ld
=

1

L0
+ ε

1

L1
+ · · · ,

(5)

and multiple-scale expansion2

∂

∂x
→ ∂

∂x
+ ε6

∂

∂ξ
,

∂

∂y
→ ε

∂

∂η
,

∂

∂t
→ ε4

∂

∂τ
. (6)

Substituting variables and operators (4), (5), and (6) into equation (3), and
seeking an amplitude equation for the O(1) velocity element of the disturbance
flow

U(ξ,η, τ) = −
∂ψ0

∂η
,

we obtain

Uτηη − (1/L21)Uτ = −(2− γ2)Uηηηη − 3Uηηηηηη − 2γ(U2)ηηηη

+ (2/3)(U3)ηηηη − β0Uξ , (7)

where
γ = β1 −UB1 .

Now, we consider a steady solution U0(η) of equation (7), having one extrema
and U0 → UW as η→ ±∞ , where UW is a constant [4]. We first integrate (7)
twice with respect to η , and use the conditions

U0 → UW ,
dU0

dη
→ 0 as η→ ±∞ .

2Although the stream function of the disturbance flow ψ has O(1) element ψ0 in (5),
the velocity of the disturbance flow is not O(1) , since, by consindering an equation for ψ0 ,
it is confirmed that ψ0 has no x−dependence [3, equations (27.a)–(28)]).
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Multiplying the resulting equation by dU0/dη , and integrating again with
respect to η , we obtain

dU0

dη
= ±1

3

√
−V(U0) . (8)

Here, the potential is defined as

V(U0) = −U4
0 + 4γU3

0 + 3(2− γ2)U2
0 − 6C1U0 − 3C2 , (9)

and the constants of integration C1 and C2 are
C1 = (2− γ2)UW + 2γU2

W −
2

3
U3
W ,

C2 = U
4
W −

8

3
γU3

W − (2− γ2)U2
W .

(10)

In order that the solution U0 takes the same value UW at η → ±∞ , the
potential V(U0) should have a double root UW and two other distinct real
roots UE and UR , i.e.,

V(U0) = (U0 −UW)2(U0 −UE)(U0 −UR), (11)

where UE < UR , UW 6= UE , UW 6= UR , and the conditions

γ−
1

2

√
6(γ2 + 2) < UW < γ+

1

2

√
6(γ2 + 2) , (12)

and
UW < γ−

1

2

√
2(γ2 + 2) or γ+

1

2

√
2(γ2 + 2) < UW , (13)

must be satisfied.

From (9), (10), and (11), we obtain

UE = 2γ−UW −
√
−2U2

W + 4γUW + γ2 + 6 ,

UR = 2γ−UW +
√
−2U2

W + 4γUW + γ2 + 6 .
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The steady isolated zonal jet solutions

U0east(η) =
a2
eastUR tanh

2
[
(UR−UW)aeast

6
η
]
−UE

a2
east tanh

2
[
(UR−UW)aeast

6
η
]
− 1

, aeast =

√
UE −UW
UR −UW

,

(14)
and

U0west(η) =
a2
westUE tanh

2
[
(UE−UW)awest

6
η
]
−UR

a2
west tanh

2
[
(UE−UW)awest

6
η
]
− 1

, awest =

√
UR −UW
UE −UW

,

(15)
for parameters γ and UW satisfying conditions (12) and (13) .

These solutions represents a zonal flow superposed upon a small-scale si-
nusoidal transverse background flow, governed by an amplitude equation
having ξ- and η- dependence. Then Uξ = 0 in equation (7) corresponds
to the situation where U is ξ-independent and governed by an amplitude
equation depending only on η and τ .

3 Linear stability of steady solution

To investigate the linear stability of the steady solution U0(η) , we add a suf-
ficiently small perturbation v(ξ,η, τ) = exp(στ)h(ξ)f(η) . The characteristic
equation is derived in the same manner as by Obuse et al. [4]. Substituting
U0 + v into equation (7) and linearising with respect to v , then introducing a
function g(η) , which satisfies f(η) = d2g(η)/dη2 and g→ 0 , dg/dη→ 0 as
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η→ ±∞ , we obtain the characteristic equation

σ

[
d2

dη2
−

1

L21

]
(gh)

= −(2− γ2)
d4(gh)

dη4
− 3

d6(gh)

dη6
+
d2

dη2

[
(2U2

0 − 4γU0)
d2(gh)

dη2

]
− β0g

dh

dξ
.

(16)

Since the ξ-dependence in equation (16) only appears in the form dh(ξ)/dξ ,
by considering a Fourier expansion h(ξ) =

∑∞
nξ=−∞ hnξ exp (inξ(2π/Lξ)ξ) ,

where nξ ∈ N is the wavenumber and Lξ is a width of the domain in the ξ
direction, it is sufficient to solve

σ

[
d2

dη2
−

1

L21

]
g

= −(2− γ2)
d4g

dη4
− 3

d6g

dη6
+
d2

dη2

[
(2U2

0 − 4γU0)
d2g

dη2

]
− i

2πnξ
Lξ

β0g(η), (17)

for various 2πβ0nξ/Lξ . Because of the symmetry property of the character-
istic equation discussed by Obuse et al. [4], investigating the linear stability
of U0east with γ > 0 is sufficient to understand the linear stability for all U0 .
It is easily verified that the characteristic equation (17) also holds for σ = 0 .

We numerically solve the eigenvalue problem (17) by the Fourier spectral
method, where, for example, U0 =

∑K
k=−K uk exp (ik(2π/Lη)η) . We consider

a periodic domain [0,Lη] . The width of the domain, Lη , is determined so that
the numerical calculations converge.3 The size of the spatial grids is set to be
1/210, and the truncation mode number K is chosen such that K/Lη = 125/16
for each case. The O(ε) element of the Rossby radius of deformation, L1 ,
is always expressed by the ratio L1/LJ , where LJ is the width of the steady
zonal jet U0 and satisfies | (U0(0) −U0(LJ/2)) / (U0(0) −UW) | = 1/e .

3We mainly took Lη = 384 and 512 for each case and confirmed the convergence of the
calculations.
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Figure 1: Maximal growth rate of (18)(red crosses) for (γ,UW) = (1.0,−1.0)
(left) and (5.0,−1.0) (right). The pink dotted line corresponds to the equiva-
lent result for the barotropic model.
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3.1 ξ-independent case

First, consider the case where U is independent of ξ . Thus the characteristic
equation is

σ

[
d2

dη2
−

1

L21

]
g = −(2− γ2)

d4g

dη4
− 3

d6g

dη6
+
d2

dη2

[
(2U2

0 − 4γU0)
d2g

dη2

]
. (18)

The real parts of leading eigenvalues or maximal growth rate of perturbations
are shown in Figure 1. When L1/LJ is large, the maximal growth rate
asymptote to those of U0 in a barotropic system obtained by Obuse et al. [4]
(the pink dotted line in Figure 1). This is to be expected, since the vorticity
equation of an equivalent-barotropic quasi-geostrophic model converges to a
barotropic model when Ld →∞ . The maximal growth rate decreases as L1/LJ
decreases, and appear to asymptote to zero. In this limit, varying L1/LJ only
corresponds to investigating the same instability on a different time scale.
Therefore the real part of the leading eigenvalue is positive, not zero, even
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when L1/LJ = 1.0 × 10−6. As a consequence, all the steady isolated jet
solutions U0 are linearly unstable, as for the barotropic case of Obuse et
al. [4], though the instability is weaker than for the barotropic case. The
instability would be expected to bring about the deformation of U0 , and
cause the disappearance of zonal jets.

3.2 ξ-dependent case

Now we investigate the ξ−dependent case. Figure 2(a) shows the maximal
growth rate for fixed γ , UW and 2πnξβ0/Lξ . For |2πnξβ0/Lξ| sufficiently
small, the maximal growth rate monotonically decreases as L1/Lj decreases,
similar to the ξ−independent case in Figure 1. This is to be expected, since
2πnξβ0/Lξ = 0 corresponds to the ξ−independent case. On the other hand,
for larger |2πnξβ0/Lξ| , the plots of the maximal growth rate show that these
have maxima at L1/LJ ∼ 101/2. The position and magnitude of these maxima
both decrease as |2πnξβ0/Lξ| becomes larger, but the maximal growth rate
for larger |2πnξβ0/Lξ| does not exceed that for smaller |2πnξβ0/Lξ| even at
L1/LJ ∼ 101/2. Hence, the maximal growth rate for a fixed L1/LJ monotonically
decrease as |2πnξβ0/Lξ| increases, and this will be confirmed later. These
maxima appear for different choices of UW and γ (not shown). The mechanism
of the appearance is not yet clear, and the structure of the eigenfunctions
shows no apparent change from those of large or small |2πnξβ0/Lξ| . Now,
concentrating on the region where L1/LJ is small, all the maximal growth
rates appear to asymptote to zero. However, for the same reason as stated
for the ξ−independent case in Subsection 3.1, they do not become zero but
remain positive.

The plot of maximal growth rate for fixed γ , UW and L1/LJ is shown in
Figure 2(b).4 These monotonically decrease as |2πnξβ0/Lξ| increases, and
take the maximum value at 2πnξβ0 = 0 , whether or not they have a lo-

4We could not obtain the eigenvalue for large |2πnξβ0/Lξ| because continuous modes
appear and the numerical calculations no longer converge in this limit.
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Figure 2: (a) Maximal growth rate for γ = 1.0 , UW = −1.0 , 2πnξβ0/Lξ =
1.0× 10−4 (red), 5.0× 10−4 (orange), 1.0−3 (blue), 1.1× 10−3 (green), and
1.2× 10−3 (light blue). (b) Maximal growth rate (red crosses) for γ = 1.0 ,
UW = −1.0 , L1/LJ = 1.0(left) and 3.0(right).
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cal maximum in Figure 2(a). This confirms that the maximal growth rate
at larger |2πnξβ0/Lξ| does not exceed that for smaller |2πnξβ0/Lξ| in Fig-
ure 2(a).

Furthermore, Figure 2 suggests that all the zonal jet solutions U0 are linearly
unstable, and specifically, the ξ-independent mode, i.e., the mode independent
of longitudinal direction, is the most unstable mode. This is even though the
amplitude equation on the zonal flows (7) has both η- and ξ- dependence.
The instability is expected to bring about the deformation of the steady
isolated zonal jet U0 and cause its disappearance.

4 Conclusions

In this paper we have performed an asymptotic analysis in an equivalent-
barotropic quasi-geostrophic system, extending Manfroi and Young’s anal-
ysis [3]. We then studied the linear stability of steady isolated zonal jet
solutions U0 when it is governed by an amplitude equation that is indepen-
dent of and dependent on the longitudinal variable ξ . It was found that in
both cases all the zonal jet flows U0 under the influence of zonal flow–nonzonal
background flow interaction are linearly unstable. Consequently, the zonal jet
solutions are expected to deform in time. For the case where the amplitude
equation of the zonal flows has longitudinal dependence, it was also found that
the mode independent of longitudinal direction, i.e., the zonal mode, is most
unstable among all the two-dimensional modes. We are particularly interested
in long-time behaviour and the final state of the steady isolated zonal jets U0

in these systems, especially when U0 is allowed to have non-zonal variation.
This problem is now under investigation.
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