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Fast accurate multi-key weight measurement
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Abstract

We consider an industrial problem brought to the Mathematics in
Industry New Zealand study group in 2016, where items pass briefly
over load cells resulting in a noisy oscillatory signal, from which the
mass of the item is to be computed. We compare results obtained using
a single load cell for one piece of fruit, with results from passing over
two load cells in tandem or in succession with fruit on multiple keys. We
develop mathematical models to assist with the computation of total
load mass, considering both deterministic and statistical approaches.
The fitting of simple harmonic motion plus a step function exhibits the
possibility of rapid estimates of load mass. We find that using multiple
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keys to measure the weight of a fruit provides more accurate results
than using the single-key method.
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1 Introduction

Compac designs and exports equipment that sorts fruits and products for
orchard packhouses. They presented a challenge to the 2016 Mathematics in
Industry New Zealand (minz) study group, entitled Estimating the Weight
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of a Moving Article Across Multiple Weigh Points. Compac also presented
challenges to minz and misg (Mathematics in Industry Study Group) in
previous years. For instance in the 2004 Study Group, the Compac chal-
lenges were “The Boxing Problem” and “The Bagging Problem” [1]. The
former challenge was about filling boxes with a specific number of articles to
specifications such as minimum weight and maximising the number of boxes
packed. The “Bagging Problem” was about filling bags above a minimum
weight and maximising the number of bags packed, amongst other criteria.
In 2015 Compac brought another challenge to minz, entitled “Calibration
Transform for Discrete Spectroscopic, Mechanical and Optical Systems”. This
project aimed at creating a calibration transform that would convert the
output of different spectroscopic systems to a standardized form. In all
these problems, including the Compac challenge described here, the minz or
misg teams built mathematical and computational models to understand and
predict the physical situation and to improve and optimize algorithms for the
processes. Solutions proposed by study group teams have directly impacted
and significantly improved Compac’s boxing, weighing, bagging, and sorting
software processes, which led to increased quality and productivity of their
equipment and systems.

The work presented here is based on the results of the minz 2016 study group.
Part of the fruit sorting process relies on fruit being weighed as it briefly
passes over load cells on a conveyer belt. The fruit is supported by holders
or keys. The weighing table needs to be able to deal with a range of fruit
sizes and geometries. For instance, some fruit in the proposed new design will
be supported by a single holder or key that will be measured as the single
key moves over a load cell, and previous conveyor belt designs used a single
holder for a single piece of fruit. The new design of the weighing section
has led to the possibility of having one piece of fruit or any other article on
multiple keys, to allow each key to remain on a load cell for a longer period
of time than in previous single-holder designs. Compac mainly sorts orchard
fruit, but for the investigations in this paper articles not limited to fruits
are used. Therefore we refer to articles when relating to the analysis of this
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Figure 1: Articles on conveyor belt system: (a) single-key article (apple);
(b) multi-key article (kumara).
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of fruit sizes and geometries. For instance, some fruit in the proposed new
design will be supported by a single holder or key that will be measured as
the single key moves over a load cell, and previous conveyor belt designs used
a single holder for a single piece of fruit. The new design of the weighing
section has led to the possibility of having one piece of fruit or any other
article on multiple keys, to allow each key to remain on a load cell for a
longer period of time than in previous single-holder designs. Note, that
Compac is mainly sorting orchard fruit, but for the investigations in this
paper articles not limited to fruits are used. Therefore we refer to articles
when relating to the analysis of this work and to fruits when referring to
the purpose and application of Compac Sorting. Now, articles may rest
on one or multiple keys (Figure 1), which are weighed sequentially, key-
by-key. The main challenge arising from the proposed multi-key weighing
process is the measurement of the distributed weight of the article by multiple
keys, typically with unknown contact process machine is complicated by
the multiple support points, the fact that the article and/or the key may
bounce during the weighing time, and the noise arising from the engineering
environment. Compac are particularly interested in assessing whether the
new design, with the help of some mathematical postprocessing of the data,
is e↵ective in improving the accuracy of the weighing process. Compac aims
to measure masses accurate within 1 g for single-key and 5 g for multi-key
articles.

key keys

a) b)

Figure 1: Articles on conveyor belt system. a) single-key article (apple); b)
multi-key article (kumara).

We analyse and post-process data to find the most desirable weighing
solution for Compac’s existing measuring system. The analysis will answer
the following three key questions:

1. Currently, there are two measuring concepts (Section 1.1) — parallel
and serial — by which articles are measured. Which of the two mea-
suring set ups — single or dual load cell — provide a higher accuracy?

work and to fruits when referring to the purpose and application of Compac
Sorting. Now, articles may rest on one or multiple keys (Figure 1), which
are weighed sequentially, key-by-key. The main challenge arising from the
proposed multi-key weighing process is the measurement of the distributed
weight of the article by multiple keys, typically with unknown contact process
machine is complicated by three effects: the multiple support points; that the
article and/or the key may bounce during the weighing time; and the noise
arising from the engineering environment. Compac are particularly interested
in assessing whether the new design, with the help of some mathematical
postprocessing of the data, is effective in improving the accuracy of the
weighing process. Compac aims to measure masses accurate within 1 g for
single-key and 5 g for multi-key articles.

We analyse and post-process data to find the most desirable weighing solution
for Compac’s existing measuring system. The analysis answers the following
three key questions.

1. Currently, there are two measuring concepts (Section 1.1)—parallel and
serial—by which articles are measured. Which of the two measuring set
ups—single or dual load cell— provide a higher accuracy?

2. Can a mathematical model be developed that is able to estimate the
true weight of the article from recorded data sets for all considered
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articles—single and multi-key alike?

3. What is the estimated theoretical weighing accuracy for a given conveyor
belt velocity?

1.1 Single key versus multiple keys

The simultaneous two-key or parallel weighing method measures the weight
on a pair of keys that simultaneously pass over two load cells, and outputs
signals from each of the load cell. The data used in our analysis is from a
seven key set up illustrated in Figure 2. We refer to keys by consecutive
number, with number 1 being the first key, and number 7 being the last. The
support points of the keys are organised such that three keys (namely keys
2-4-6) are measured on load cell one and four keys (namely keys 1-3-5-7) are
measured on load cell two. In this set up the keys are weighed simultaneously
in pairs, excluding key 7 which has no pair; key 1 is weighed on load cell two
simultaneously with key 2 on load cell one, and so forth.

In contrast, in the single-key or serial weighing method the keys pass over one
load cell sequentially and due to the design of the weigh beam the single-key
measurements are made in half the period of time that is available when using
the parallel weighing method. Data obtained with the single-key method are
generated by another load cell (load cell three, with a wider top plate) that
is impacted by all seven keys (not shown).

The data we considered during the study group was obtained for a setup
with just seven keys in total, which go over the weigh-bridge with three load
cells, crossing them as detailed above, then loop around and go over it again.
Fruit or test weights are added by hand to the keys, before they reach the
weigh-bridge, and are removed after the weigh-bridge before the keys loop
around to begin again. The placement of the article is repeated several times
in one data run. Hence the data shows at various times either load cells with
nothing on them, or with empty keys moving across them, or with a loaded
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Figure 2: Key and load cell numbering system: (a) real system; (b) schematics.
1 Introduction 5
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Figure 2: Key and load cell numbering system. a) Real system. b) Schemat-
ics.

it; the other keys are empty but they weigh about 18 g. An estimation of
the weight of a single-key article such as the mandarin using this average
technique is within 0.3 g of its actual weight at this belt speed.

When the simultaneous weighing method is applied to a two-key sized
fruit like a pear, there are two potential outcomes based on the position of
the article or fruit on the key(s). In the first case the fruit is positioned such
that the fruit lies on a key pair with each key simultaneously supported on a
separate load cell as illustrated by the signal in Figure 4a). In case two the
fruit is positioned such that the key pair is measured in a staggered manner,
each key being weighed in separate time windows and thus its weight is
recorded sequentially instead of simultaneously as illustrated in Figure 4b).

The motion of the keys over the load cells (and other obstacles) may cause
the articles to bounce or rock on the keys and thus lift o↵ one or more keys.
If the lift-o↵ happens entirely on one key then the full weight of the fruit
may be supported by the remaining key(s) for the duration of lift-o↵. If the
article is in the process of shifting o↵ or onto a key while it is passing over
the load cell, then its weight might not register at all if it is ‘in flight’. In this
case the weight of a two-key article is estimated with the average method as
a one-key article for the duration of the lift-o↵ (Figure 4a)). Applying this
method the weight of the pear is estimated to be 165.11 g, where its actual
weight is 165.26 g (error 0.1 %, or 0.15 g).

When a lift-o↵ occurs such as in case two, the prior method cannot be
used as a shifting weight cannot be captured simultaneously on each load
cell. We assume lift-o↵ does not occur, and we treat the data as if the fruit is
supported on one key. Then our prediction of the weight obtained by adding
partial weights from two keys, falls outside the acceptable error tolerance of

key moving across them. The mean signal value indicates the particular case
at any given time. Both raw and filtered signals are available. The filter is a
fifth-order Butterworth filter set at about 55Hz.

Compac currently operates an automatic system that specialises in weighing
fruits based on single-key technology. The method estimates the weight of
the article by calculating the average of the low-pass filtered output signal
from the load cell for a time range when the key and fruit passed over the
load cell. An example is illustrated in Figure 3; key 2 has the mandarin on
it; the other keys are empty but they weigh about 18 g. An estimation of
the weight of a single-key article such as the mandarin using this average
technique is within 0.3 g of its actual weight at this belt speed.

When the simultaneous weighing method is applied to a two-key sized fruit
like a pear, there are two potential outcomes based on the position of the
article or fruit on the key(s). In the first case the fruit is positioned such
that the fruit lies on a key pair with each key simultaneously supported on
a separate load cell as illustrated by the signal in Figure 4a. In the second
case the fruit is positioned such that the key pair is measured in a staggered
manner, each key being weighed in separate time windows and thus its weight
is recorded sequentially instead of simultaneously as illustrated in Figure 4b.
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Figure 3: Filtered load cell signals for a mandarin sitting on a single key,
belt speed 900 rpm. The zero weight is arbitrary at about 220 g for both
cells. An empty key weight gives a mass change of about 18 g; the mandarin
a further 110 g approximately. Key 1 (load cell 2) is empty while passing
over the load cell system together with the mandarin on key 2 (load cell 1)
simultaneously. Key numbering is detailed in Figure 2.
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Figure 4: Load cell signals—mass versus time—for a pear positioned on two
keys, belt speed 900 rpm.

(a) Simultaneous weight measure. The
pear is mainly carried on key 4, but
some of its weight is also on key 3,
both measured during the same time
range (23.9, 24.05) s. Lift-off of the fruit
from the key is observed in the signal
behaviour indicated by the black line.
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(b) Staggered weight measure. The pear
is mainly on key 2, weighed during the
time period (66.3, 66.5) s, but apparently
some part is bouncing onto key 3 during
the next measuring period.
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The motion of the keys over the load cells (and other obstacles) may cause
the articles to bounce or rock on the keys and thus lift off one or more keys.
If the lift-off happens entirely on one key, then the full weight of the fruit
may be supported by the remaining key(s) for the duration of lift-off. If the
article is in the process of shifting off or onto a key while it is passing over
the load cell, then its weight might not register at all if it is ‘in flight’. In this
case the weight of a two-key article is estimated with the average method as
a one-key article for the duration of the lift-off (Figure 4a). Applying this
method the weight of the pear is estimated to be 165.11 g, whereas its actual
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weight is 165.26 g (error 0.1%, or 0.15 g).

When a lift-off occurs such as in the second case, the prior method cannot
be used as a shifting weight cannot be captured simultaneously on each load
cell. We assume lift-off does not occur, and we treat the data as if the fruit is
supported on one key. Then our prediction of the weight obtained by adding
partial weights from two keys, falls outside the acceptable error tolerance of 1 g.
However, measuring the weight of the pear in a staggered manner, assuming
the article is resting on both keys 2 and 3, Figure 4b, the predicted weight
is 164.2 g which also lies outside of the desired error tolerance. The importance
of considering the aforementioned measuring methods, simultaneous and
staggered, becomes more obvious when considering an article that spans more
than two keys, as in Figure 5. In such a case it is impossible for the entire
article’s weight to be measured simultaneously.

The load cell voltage signals are statically calibrated by four different cali-
bration masses ranging from 67.31 g to 200.03 g as well as with empty keys,
which have slightly differing weights about 16.31 g. This is done for all three
load cells. The calibration curves are linear and the calibration factors are
directly implemented in our analyses. Unless otherwise specified we directly
present measured masses in grams and not in voltage.

For an initial proof of concept of this method, time ranges were eye-balled
manually at values after and before jumps. Compac Sorting monitors the
speed of the belt in revolutions per minute (rpm) and the length of the keys
is known by design. Furthermore, optical sensors are used to record when
keys arrive at a load cell. Therefore, in an automated process the exact time
ranges for when keys are on a load cell are readily available.

1.2 Data Analysis

The parallel setup (on two load cells) produces two simultaneous signals. In
the data provided by Compac, as detailed above, a total of seven keys pass
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Figure 5: Kumara weighing data, belt speed 900 rpm.
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over the two load cells. The single load-cell setup produces one signal from
seven keys in succession. We continue to use only the low-pass filtered signal
that is provided directly from a load cell.

Compac currently operates equipment that weighs single-key fruit successfully.
Their current method involves taking the average of the filtered signal from
a load cell after initial transients have subsided. This method provides an
estimated weight with under 1 g of error, for fruit that is not too heavy and
for moderate belt speeds.

As discussed, when weighing a multi-key article, there are two possible
scenarios for the article to pass over the load cells, namely simultaneously
or successively. These cases result in qualitatively dissimilar signals, as the
dynamic behaviour of keys dropping on to a load cell may cause fruit to move
or even to bounce off a key for a short period of time. At the moment of
lift-off for scenario one, the article’s entire weight is assumed to be supported
by the remaining key, from which an accurate measurement is obtained by
using Compac’s single-key method. However, should a lift-off occur for case
two (successive measurement), the single-key method fails. Another degree
of complexity is added by fruit bouncing between two or more keys due to
the dynamic nature of the motion, which introduces transient signals due to
impact and rebound and thus altering the apparent weight of the fruit.

Considering a multi-key article such as the kumara used in Figure 5, there
are two ways of using an averaging technique to approximate the weight of a
multi-key article. In each case, we take the average value of the signal f(t)
over some time window ∆t starting from time t0. By first adding the signals of
the load cells together, and then taking an average of the combined signal we
obtain an estimate for the weight of the article on each key pair and identify
any simultaneously recorded dynamics. The total weight of the article is
then estimated by adding up the estimates for each key pair. We refer to
this method as the combined signal method. An alternative approach is to
first split the load cell signals up into separate key signals and then take
an average of the individual signals. Calculating the sum of the averages
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Figure 6: Potato weights calculated using different weighing methods.

1 Introduction 10

refer to this method as the combined signal method. An alternative approach
is to first split the load cell signals up into separate key signals and then take
an average of the individual signals. Calculating the sum of the averages of
all key signals provides an estimate of the total weight of the fruit. This
method is referred to as the separate signal method. For the single-cell load
cell measurement method (Section 1.1), the latter method for finding weight
estimate must be used.

Testing these methods on a potato they were found to provide practically
identical estimates. However, both estimates fall outside of the desired error
tolerance of 1 g (Figure 6). The combined signal method and the separate
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Figure 6: Potato weights calculated using di↵erent weighing methods.

signal method both produce better results from the parallel load-cell data
than predictions estimated from the single load-cell data (Figure 6). This
reveals a conclusion and answer to the first question of Section 1 about the
accuracy between parallel and serial load-cell measurement methods. The
parallel load-cell set up provides higher accuracy measure than the single
load-cell set up.

of all key signals provides an estimate of the total weight of the fruit. This
method is referred to as the separate signal method. For the single-cell load
cell measurement method (Section 1.1), the latter method for finding weight
estimate must be used.

Testing these methods on a potato they were found to provide practically
identical estimates. However, both estimates fall outside of the desired error
tolerance of 1 g (Figure 6). The combined signal method and the separate
signal method both produce better results from the parallel load-cell data
than predictions estimated from the single load-cell data (Figure 6). This
reveals a conclusion and answer to the first question of Section 1 about the
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accuracy between parallel and serial load-cell measurement methods. The
parallel load-cell set up provides higher accuracy measure than the single
load-cell set up.

2 A Geometric Approach

In this section we consider a slightly different (geometric) approach to extract
the weight from a raw load-cell signal that is oscillating due to damped
harmonic motion. This approach largely follows that of Kesilmis and Baran [2].
We modestly extend their findings in the following three main ways:

1. by developing an explicit formula for the static equilibrium voltage;

2. by demonstrating the both linear and nonlinear interpolations give rise
to the same solution for the static equilibrium voltage; and

3. by comparing these results with those obtained with a computer program
that solves this problem using iterative methods.

The static equilibrium of a dynamic system is the mean value about which the
object oscillates when in motion. For this highly dynamic weighing process
of articles the mean value needs to be extracted from the signal. This off-set
value is subject to change for every key and key-article combination.

The motivation for a geometric approach is as follows: the weight force that
an article applies to the keys (and hence the load cell) typically causes the
load cell to produce a voltage/time signal that resembles damped oscillations.
Determining the equilibrium from the signal amounts to knowing the combined
mass of the article of fruit, and the keys over which it spans (since the mass
of an object on the load cell is linearly related to the voltage that the load
cell outputs). Once this combined mass value is known, the masses of the
keys (approximately 16 g each) are subtracted, giving the mass of the fruit.

To the extent that the voltage signals produced by the load cell can be



2 A Geometric Approach M341

Figure 7: Linear interpolations to determine the off-set voltage.
2 A Geometric Approach 12

I
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Figure 7: Linear interpolations to determine the o↵-set voltage.

4. Determine the o↵-set voltage, v⇤, by evaluating vI(T
⇤).

The key for solving for both T ⇤ and v⇤ is the assumption that the time
intervals between the occurrence of each pair of local extrema is constant.
In reality some variations would be present, but expected to be su�ciently
small and therefore treated as negligible.

We now give a brief derivation of both linear and nonlinear “interpola-
tion” functions. Figure 7 illustrates how we interpolate using straight lines.
For instance, the straight line joining (t1, v1) and (t2, v2) has a gradient of
v2 � v1/t2 � t1. It is described by

vI(t) =

✓
v2 � v1

t2 � t1

◆
t +

v1t2 � v2t1
t2 � t1

for t1  t  t2.

Similarly, the straight line that subsequently joins (t2, v2) and (t3, v3) is given
by

vII(t) =

✓
v3 � v2

t3 � t2

◆
t +

v2t3 � v3t2
t3 � t2

for t2  t  t3.

These results agree with those of Kisilmis and Baran [2]. Imposing the geo-
metric condition that

vI(T
⇤) = vII(T

⇤ + �t)

modelled by damped sinusoids, we exploit geometric properties of sinusoids
to determine this off-set voltage. In the following we outline this method
by referring to the details of Figure 7, which illustrates how this method is
applied to a typical set of damped oscillations.

1. Locate three adjacent local extrema in the signal, with coordinates (t1, v1),
(t2, v2), (t3, v3), where vi = v(ti) for a voltage/time signal v.

2. Interpolate between t1 and t2 with a function vI(t), and again between t2
and t3 with a function vII(t) using either straight lines, or trigonometric
functions.

3. Determine the special time, T∗, for which vI(T∗) = vII(T∗ + ∆t) with
∆t = t3 − t2 = t2 − t1 being the half-period of the oscillation.

4. Determine the off-set voltage, v∗, by evaluating vI(T∗).
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The key for solving for both T∗ and v∗ is the assumption that the time
intervals between the occurrence of each pair of local extrema is constant. In
reality some variations would be present, but expected to be sufficiently small
and therefore treated as negligible.

We now give a brief derivation of both linear and nonlinear ‘interpolation’
functions. Figure 7 illustrates how we interpolate using straight lines. For
instance, the straight line joining (t1, v1) and (t2, v2) has a gradient of v2 −
v1/t2 − t1. The line is described by

vI(t) =

(
v2 − v1
t2 − t1

)
t+

v1t2 − v2t1
t2 − t1

for t1 6 t 6 t2 .

Similarly, the straight line that subsequently joins (t2, v2) and (t3, v3) is

vII(t) =

(
v3 − v2
t3 − t2

)
t+

v2t3 − v3t2
t3 − t2

for t2 6 t 6 t3 .

These results agree with those of Kisilmis and Baran [2]. Imposing the
geometric condition that vI(T∗) = vII(T

∗ + ∆t) and recalling that ∆t =
t3 − t2 = t2 − t1 gives

T∗ =
v3t3 − 2v3t2 + v2t2 + v2t1 − v1t2

2v2 − v1 − v3
.

Then the offset voltage is

v∗ =
v1v3 − v

2
2

v1 + v3 − 2v2
.

In order to see that this formula makes intuitive sense, consider the case of
undamped motion. This has the consequence that v1 = v3. Replacing v3
with v1 in the expression for v∗ yields

v∗ =
v21 − v

2
2

2v1 − 2v2
=

(v1 + v2)(v1 − v2)

2(v1 − v2)
=
v1 + v2

2
. (1)
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This demonstrates that v∗ returns the correct value of the mean of the
two local extrema v1 and v2, which represent a peak and a trough (in no
particular order).

This formula for the off-set voltage is now derived in a slightly different
manner. Instead of formulating linear interpolation functions vI and vII, we
interpolate using portions of cosine functions. This is perhaps a slightly more
intuitive approach, since we assume that the signals oscillate like sinusoids.
The relevant interpolation functions in this case are

vI(t) =
v1 − v2

2
cos

(
π

[
t

∆t
−

1

2∆t
(t1 + t2) +

1

2

])
+
v1 + v2

2
for t1 6 t 6 t2 ,

and

vII(t) =
v2 − v3

2
cos

(
π

[
t

∆t
−

1

2∆t
(t2 + t3) +

1

2

])
+
v2 + v3

2
for t2 6 t 6 t3 .

When we impose that vI(T∗) = vII(T∗ + ∆t), we obtain

T∗ =
1

2
(t1 + t2) +

∆t

π
cos−1

(
v3 − v1

v1 − 2v2 + v3

)
−
∆t

2
.

If ∆t = t3 − t2 = t2 − t1, then we obtain the same expression (1) for v∗ as
with the previous linear approach.

2.1 Results

The success of our formula for the off-set voltage, v∗, depends on the extent
to which the actual voltage/time signals resemble damped simple harmonic
motion. In many cases, but especially where articles are irregularly shaped,
and appear to rock on their supporting keys, the signals display considerable
volatility. In these situations, the value for v∗ that the formula returns is also
rather volatile.
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An additional shortcoming of equation (1) for v∗ is that it assumes that the
time between local extrema is constant, which is not always true in our data.
As a result, we developed a computational method for solving the problem in
a more rigorous manner. This method does not use interpolation functions,
but operates on the data itself. It finds the particular time, T∗, for which the
steady voltage is estimated by the formula

vI(T
∗) = vII(T

∗ + ∆t) (2)

where ∆t corresponds to the “mean half-period” of the particular set of three
local extrema. The raw data is discretised at intervals of 2.5×10−4 s, which
slightly constrains the accuracy of both methods. This does not require
that t3 − t2 = t2 − t1. Figures 8a to 8d contrast the results of applying
both the expression, and the computational method, to the signals from two
man-made articles (A1 and A4), and also from two real articles (F3, an orange
weighing 290.0 g, and F8, a potato weighing 74.7 g).

Several key observations arise from Figure 8. The first is that both methods
return similar values. The mass for A1 is estimated to be 75.85 g (using
formula (1) for v∗) and 75.38 g (using computational method (2) for vI). The
mass for A4 is estimated to be 188.99 g (using v∗) and 188.59 g (using vI).
The mass for F3 is estimated to be 272.6 g (using v∗) and 271.6 g (using vI).
The mass for F8 is estimated to be 72.4 g (using v∗) and 73.1 g (using vI).
However, these results fall outside the acceptable tolerance of 5 g (for multi-
key articles), as for example the true masses of articles A1 and A4 are 80.8 g
and 200.1 g respectively.

The second observation is that the formula (1) derived for v∗, even though it
assumes incorrectly that the ‘half-periods’ between successive local extrema
are equally spaced, returns a less variable value for the off-set voltage, which
is useful as the values of v∗ are averaged in order to produce a single voltage
for a given article (and, therefore, a single mass). Indeed, the expression (1)
for v∗ often seems to smooth the volatility of the numerical solution; this is
especially apparent in the case of article A1.
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Figure 8: Examples of applying the geometric method to filtered raw signals
from load-cell data. Data is represented by the blue dot symbols, the numerical
steady-state by solid black lines, and the formula steady-state by dashed
red lines.
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(b) Geometric approach applied to arti-
cle A4.
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(c) Geometric approach applied to arti-
cle F3.
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Overall, a geometric approach seems to hold some promise in solving the
problem of high-speed weighing. In the case of an article that spans multiple
keys, where there is sudden and unpredictable rocking or bouncing on keys,
the signal may be sufficiently volatile that a geometric approach needs to be
combined with another method. The application of these methods to signals
where the article is known to rock or bounce should be the subject of further
research in this area.

3 Nonlinear Fitted Solution Approach

In this section we consider an alternative and more sophisticated approach
to those presented in previous sections, this time working directly with the
raw (unfiltered) signal from any single load-cell as shown in Figure 9. The
measured signal is the voltage from the load cell, converted from analogue to
digital, and labelled adc.

The signal plotted in Figure 9 consists of two major components: one is a
step function; and the other is highly oscillatory. The former originates from
the change of weight sensed by the load cell. Empty keys also cause a small
impulsive change of voltage due to the change of sensed weight when the key
first meets the load cell. For keys supporting an article this jump is significant
and easy to identify. The oscillations are initiated by keys mechanically
loading or unloading the load cell, and the resulting oscillation reveals the
natural frequency of the load cell.

We seek to use nonlinear optimisation to fit the signal simultaneously with
a step function and a damped harmonic motion solution. For simplicity of
presentation, we consider only one load-cell signal in this section, and the
focus is on an effective method for rapidly filtering out the oscillations in
the signal.
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Figure 9: Unfiltered input signal. The lower plot is a zoom-in on the time
range [24, 24.5] of the upper plot to show more detail.
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3.1 Mathematical modelling

Looking at Figure 9, we think of the signal y from a load cell as being
composed of a static component ys and a dynamic component yd from the
raw signal y0,

y(t) = ys(t) + yd(t). (3)

We envisaged that the dynamic component yd might be separated from the
static component ys, which would be used for the determination of weight.
To obtain the dynamic component of the signal yd, we assume that it is
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described as damped free vibration. Then, the dynamic component of the
signal yd satisfies the equilibrium equation of forces for damped free vibration
or simple harmonic motion. The damped free vibration of the system is
governed by the ordinary differential equation (ode)

mÿd + bẏd + kyd = 0 , (4)

where m is the total effective oscillating mass, b is the damping coefficient, k
is the effective spring constant of the load cell system, and overdots denote
time derivatives.

Dividing the ode (4) by m,

ÿd + Bẏd + Kyd = 0 , (5)

where B = b
m

and K = k
m
. The general solution to (5) is

yd(t) = A e−Bt/2 cos(Ωt+ϕ), (6)

where the natural frequency of oscillation is Ω =
√
K− B2/4 , and A and ϕ

are arbitrary constants, determined by initial conditions. A is the initial
amplitude of the oscillation, and ϕ is the phase shift (rad).

Now, we seek values for the parameters A, B, Ω, and ϕ of the dynamic
component yd and the static component ys which provide the best fit to
the given raw signal data y0. Since a new damped oscillation is generated
each time a carrier key passes over a load cell as shown in Figure 9, there
are big jumps in the values of signals at these points. Therefore, we consider
piecewise processing of the load signal over a time interval for fitting the data.

3.2 Moving window processing

Consider the kth time window Tk centered on the time value tk,c as shown
in Figure 10. Each window covers 2n + 1 samples of data and consecutive
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Figure 10: Description of the moving windows.
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Figure 10: Description of the moving windows.

windows overlap by n data points. To reconstruct the signal on each window,
we use 2n + 1 samples on each window for fitting, and we choose the middle
n + 1 values from the resulting fitted signal for reconstruction. Let tk,a and
tk,b be lower and upper bounds of the time window Tk, respectively, then

tk,a = tk,1  tk,2  · · ·  tk,c = tk,n+1  · · ·  tk,2n+1 = tk,b.

This is a nonlinear least squares problem over each time window Tk. The
least squares error Sk over the time window Tk is

Sk(A, B,⌦, ', ys) =
2n+1X

i=1

|y(tk,i) � y0(tk,i)|2. (7)

We call the piecewise processing of the load signal the moving window process
(Figure 11).

windows overlap by n data points. To reconstruct the signal on each window,
we use 2n+ 1 samples on each window for fitting, and we choose the middle
n + 1 values from the resulting fitted signal for reconstruction. Let tk,a
and tk,b be lower and upper bounds of the time window Tk, respectively, then

tk,a = tk,1 6 tk,2 6 · · · 6 tk,c = tk,n+1 6 · · · 6 tk,2n+1 = tk,b.

This is a nonlinear least squares problem over each time window Tk. The
least squares error Sk over the time window Tk is

Sk(A,B,Ω,ϕ,ys) =

2n+1∑
i=1

|y(tk,i) − y0(tk,i)|
2 . (7)

We call the piecewise processing of the load signal the moving window process
(Figure 11).

3.3 Nonlinear data fitting

We apply the Levenberg–Marquardt algorithm [3, 4] for solving the nonlinear
least squares minimization problem on each window. This algorithm is a
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Figure 11: Description of moving window process.
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Figure 11: Description of moving window process.

combination of the Gauss–Newton algorithm and the method of gradient
descent. While it is more robust than the Gauss–Newton algorithm, it is
usually slower to converge. It is important to begin with an initial guess
that is close enough to the correct minimising value, for convergence to the
global minimum.

3.3.1 Estimation of the static component

For the static component ys, we adopt the average value of the raw signal
over kth time window Tk as an initial value. On each window Tk, an initial
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value is estimated as

ys(Tk) = average{y0(tk,1),y0(tk,2), . . . ,y0(tk,2n+1)}.

3.3.2 Estimation of the dynamic component parameters

The dynamic component of the signal yd(Tk) is obtained by subtracting ys(Tk)
from y0(Tk). To find the dynamic component parameters using the Levenberg–
Marquardt algorithm, we need to start with a good estimate of the initial
value of each parameter.

The derivatives ẏd and ÿd are replaced by estimates based on numerical
differences, so that equation (5) is approximated by the system of equations



yd(tk,a) ẏd(tk,a) ÿd(tk,a)

...
...

...
yd(tk,b) ẏd(tk,b) ÿd(tk,b)






K

B

1


 =



0
...
0


 . (8)

The linear system (8) is rewritten as

M

[
K

B

]
= f , (9)

where M is an (2n + 1) × 2 matrix and f ∈ R2n+1. We then find initial
estimates of K and B by solving the 2× 2 normal equation

MTM

[
K

B

]
=MT f .

An estimate of parameter A is found from the maximum of y0 − ys within
the time window Tk as

A = max
tk,i∈Tk

|y0(tk,i) − ys(tk,i)|.
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The initial frequency is estimated using

Ω =
√
K− B2/4 .

The initial phase shift is estimated using

ϕ = cos−1

(
yd(tk,a)

A

)
.

Using the above estimates as an initial guess, we solve the minimisation
problem (7) to reproduce the signal y(Tk) by the Levenberg–Marquardt
algorithm. The reproduced signal y(Tk) is shown in Figure 12, during a time
when there is no key on the cell. The fitted step values are relatively close to
each other, indicating a reasonably stable filtered signal value for the zero
additional load case.

3.4 Results

We apply our algorithm to data for a potato to illustrate the performance of
the proposed approach. The potato has a true weight of 303.03 g. As shown
in Figure 13, the signal is highly oscillatory even when empty carrier keys are
passing over the load cells.

Relatively high-valued peaks occur when a carrier key supporting an object
is on a load cell. There are three peaks visible in the given data and we
indicate them using the numbered red arrows in Figure 13. The signals of
the corresponding time intervals are shown in more detail in Figure 14.

To fit the potato data, we use a window size of 101 data values, and the size
of the intersection between consecutive windows is 50 sampled points. Since
the potato data is sampled every 0.25ms, each window covers a time interval
of about 25ms.

Figure 15 shows the graph of the reproduced signal obtained by using our
approach. The zoom-in graphs of the reconstructed signal on the time
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Figure 12: Result of the deterministic approach, after fitting simple harmonic
motion (red symbols) to raw data (black curve). The fitted step values
approximating the mass, which can be regarded as a filtered signal, can also
be seen (horizontal blue lines), for three windows.
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Figure 13: The load cell data obtained using a potato travelling at 900 rpm,
with arrows showing the approximate location of the four intervals chosen for
analysis. The earliest interval chosen has nothing on the keys, and the other
three are when the potato is on the keys crossing the load cells.
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intervals 12.60–13.00 s, 24.58–24.98 s, 45.90–46.30 s, and 67.21–67.61 s are
given in Figures 16 to 19, respectively. The black line indicates the original
input signal, the red dots are the points on the reproduced signal, and the
blue line shows the static component ys obtained on each window.

Table 1 shows the static component values of the fitted signal for each of the
time intervals (1) 12.60–13.00ms, (2) 24.58–24.98ms, (3) 45.90–46.30ms, and
(4) 67.21–67.61ms. We use the average of these values for each key, and the
static calibration formula

y = 37.8 x+ y0

where ys is the signal in mV when a loaded key is on the load cell, y0 is the
signal when an empty key is on the load cell, and x is the added mass in
grams, to convert to a predicted weight for the potato by adding the masses
on each of the three keys, since each key bears some part of the total weight of
the potato. The three loaded events gave total masses of 309, 299, and 298 g
respectively, for the mass of the potato, averaging to 302± 6 g. Comparing
this to the static measured mass of 303 g, the individual amounts have an
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Table 1: The static component of the reproduced signal on each window. The
time intervals are: (1) 12.60–13.00 s; (2) 24.58–24.98 s; (3) 45.90–46.30 s; and
(4) 67.21–67.61 s.

Time interval (1) (2) (3) (4)
Scale for ys 103 104 104 104

ys [mV]

8.20
8.19
8.20
8.20
8.20
8.20
8.20
8.20
8.20
8.20
8.20
8.19
8.19
8.19
8.20
8.20
8.20
8.20
8.20
8.20
8.20
8.19
8.20
8.20
8.20
8.20
8.20
8.20
8.20
8.20
8.20
8.20

0.88
1.24
1.27
1.26
1.24
1.22
1.21
1.20
1.19
1.19
1.18
1.23
1.27
1.26
1.24
1.22
1.21
1.21
1.21
1.21
1.20
1.21
1.22
1.21
1.21
1.19
1.18
1.17
1.17
1.17
1.17
1.16

1.01
1.22
1.22
1.21
1.19
1.18
1.17
1.16
1.15
1.15
1.15
1.22
1.26
1.25
1.23
1.21
1.20
1.20
1.20
1.20
1.19
1.22
1.25
1.24
1.23
1.21
1.20
1.19
1.19
1.19
1.19
1.18

0.82
1.16
1.23
1.23
1.21
1.20
1.18
1.17
1.16
1.15
1.15
1.16
1.24
1.25
1.23
1.21
1.20
1.19
1.19
1.19
1.18
1.18
1.22
1.24
1.23
1.21
1.20
1.19
1.18
1.18
1.18
1.17

Average 8.20 1.20 1.20 1.18
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Figure 14: Expanded views of the four time intervals chosen to analyse a
potato at 900 rpm, as shown in Figure 13. The first interval shows the baseline
signal when keys are empty.
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error of up to 6 g, whereas the average of the three runs is within 1 g of the
true mass.

4 Statistical Approach

Thematically, we thought about gaining as much prior information about the
individual articles as possible before they hit the load cells. This is made
possible through the vision technology that Compac implement. Compac
currently use a camera to photograph an article moving at high speed. The im-
age is rapidly processed to determine characteristics such as the diameter, and
any external deficiencies such as discolouration that might be present. This
complements the weighing process in informing packers as comprehensively
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Figure 15: Fitted signal yd (red symbols), and fitted step functions ys (blue
lines, which look like spikes on this scale) for the potato data set. Three
loaded key events are visible as spikes that were previously marked with
arrows in Figure 13. The filtering performed in getting the blue lines ys also
identifies the single time interval when empty keys pass over the weigh table,
near t = 3 s early in the time series.
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Figure 16: Results of fitting simple harmonic motion plus a step function on
moving windows to the potato data from a load-cell. The data is generated by
the same potato, crossing the load-cell three separate times. Data is a black
solid line, the fitted signal yd is red symbols, and fitted step functions ys are
solid blue lines. Fits for 12.6–13.0 s with no load on the cell.
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Figure 17: As for Figure 16: Fits for 24.58–24.98 s with keys loaded.
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Figure 18: As for Figure 16: Fits for 45.9–46.3 s with keys loaded.
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as possible. We posit two specific approaches to using this prior information.
A simple top down photograph of an article of fruit is sufficient to generate a
crude approximation to the mass of that article. For example, it is a simple
task computationally to fit an ellipse to the outline of a piece of fruit, infer
a three dimensional envelope of an ellipsoid, and then use an approximate
value for the density of the article to estimate its mass. A typical density
range across different types of fruit is 102–103 kg/m3.

Even the fairly crude approximation of the mass that this process would
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Figure 19: As for Figure 16: Fits for 67.21–67.61 s with keys loaded.

67.25 67.3 67.35 67.4 67.45 67.5 67.55 67.6

1

1.2

1.4

·104

Time [s]

A
D

C
[m

V
]

Figure 20: Decision matrix.
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Figure 17: Decision matrix.
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produce would be useful, for example as an initial estimate of mass in a
parameter-fitting approach like the Levenberg–Marquardt method discussed
in Section 3.3. At the moment, the signals that the load cells are producing
are essentially the sum of an idealised step function, representing the true
mass of the article being weighed, as well as noisy oscillations, caused by the
natural oscillatory motion of the article as it bounces and rocks on the keys
and load cells. Using the approximate mass value, a physical model is used
to give a simple harmonic signal, which when backed out of a noisy signal
will give us a better estimate of the true mass of the article.

Our second approach does not assume an accurate physical model for the
motion of the article. Instead, a search is made on a data base of averaged
signals, accumulated over time, each average corresponding to the specific
type of article being weighed and a specific combination of keys on which
it rests. Prior knowledge, before the load cell measurement, includes the
type of the article, the estimated weight, the number of keys that are being
spanned (but not necessarily touched) by the article, and the chain speed.
This information defines a multi-dimensional expectation space in the multi-
dimensional data space of averaged signals in our library. The current load
cell output is cross-correlated to all entries in the expectation space, with one
result producing a higher correlation than others. The averaged signal that
best correlates with the current signal allows the weight of the article to be
read out from the data base.

5 Summary and Conclusion

We addressed the challenge of weighing articles on multiple support keys in
a variety of ways. In summary the three questions posited in Section 1 are
answered as follows.

1. Currently, there are two measuring concepts—parallel and serial—with
which articles are measured. Which of the two measuring set-ups—single
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or dual load cell—provides a higher accuracy?

We found that the doubling of time on the load cell that is consequent
upon using staggered keys does improve weighing accuracy over the
conventional single holder system used by Compac, when considering
the low-pass filtered signal provided by the load cells (Section 1.2). The
low-pass filter is too slow for the single holder at this conveyor belt
speed, leading to a consistent under-estimation of the fruit weight for
the single holder, as evidenced in Figure 6.

2. Can a mathematical model be developed that is able to estimate the
true weight of the article from recorded data sets for all considered
articles—single and multi-key alike?

When the considered article is supported by more than one key, a static
approach reveals that the weights recorded for each key should be added
together. We found there was no detectable difference in accuracy,
between adding the filtered signals before computing mass, and adding
the computed masses from the separate filtered signals, as in Figure 6.
However, if random noise is affecting the signal, then in principle we
expect that adding raw signals before processing is better, as adding
can lead to a partial noise cancellation effect.

We see some evidence (Figure 4a) that articles supported by more than
one key are sometimes rocking or bouncing off one key, which reduces
the accuracy with which the mass might be estimated from the load-
cell signal. It may be useful to try to model the nonlinear dynamics
of bouncing and rocking, to identify when it may be occurring and
possibly to indicate how to modify the signal processing required to
obtain improved mass estimates during bouncing or rocking.

We consider the mathematical models developed in this paper suitable
for measuring single and multi-key articles. However, we suggest that
a technological solution be found to prevent bouncing of articles on
the keys.
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3. What is the estimated theoretical weighing accuracy for a given conveyor
belt velocity?

With a view to using a filter that acts faster than the low-pass filter cur-
rently used, we considered two different approaches. A simple geometric
approach gives very fast filtering that looks promising for removing
much of the effect of oscillations at the natural frequency of the load
and key and load-cell.

We also considered a more sophisticated approach, fitting multi-parameter
damped harmonic motion plus a step function to successive segments
of the raw signal coming from one load-cell, using the Levenberg–
Marquardt method with carefully chosen initial conditions to assist
convergence. The results are very promising, providing very rapid fil-
tering of the signal as illustrated by the piecewise step-functions in
Figure 16. The filtered signal (the step-functions) that is visible in this
figure, when viewed over the entire time-period that a key is on the
load-cell, appears to be decaying steadily. This decay might indicate
that the window used to fit the decaying signal is too narrow, and that
a wider window might give better estimates of the decay rate, resulting
in filtered signals that are closer to constant and that provide a more
accurate measure of weight.
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