ANZIAM J. 46(E) pp.C1104--C1125, 2005.

Influence of bottom boundary condition on heat distribution within oxidizing heaps

J. Crawford

Y. A. Stepanyants

(Received 26 October 2004, revised 6 October 2005)

Abstract

Different types of boundary conditions for temperature (Dirichlet, Neumann, mixed and some others) at the base of a heap comprising oxidizable material are numerically examined for their influence on temperature distribution and overall heat content within the heap. We demonstrate that some global heap characteristics (for example, the total heat content) essentially depend on boundary conditions and corresponding temperature distributions within the heap, whereas other global characteristics (for example, the overall oxidation rate) are not affected significantly. Practical recommendations on selection of boundary conditions are presented.

Download to your computer

Authors

J. Crawford
Y. A. Stepanyants
Australian Nuclear Science and Technology Organisation, Menai (Sydney), Lucas heights, NSW 2234, Australia. mailto:Yury.Stepanyants@ansto.gov.au

Published October 20, 2005. ISSN 1446-8735

References

  1. P. L. Brown et al. SULFIDOX: Version 1.1. A tool for modelling the temporal and spatial behaviour of heaps containing sulfidic minerals. ANSTO Report, ANSTO/ED/TN01-03, 2001.
  2. W. B. Hall. Reactor Heat Transfer, Temple Press, London, 1958.
  3. J. R. Harries and A. I. M. Ritchie. The use of temperature profiles to estimate the pyritic oxidation rate in a waste rock dump from an opencut mine. Water, Air, and Soil Pollution, 15:405--423, 1981.
  4. G. Pantelis and A. I. M. Ritchie. Macroscopic transport mechanisms as a rate-limiting factor in dump leaching of pyritic ores. Appl. Math. Model., 15:136--143, 1991.
  5. G. Pantelis and A. I. M. Ritchie. Rate-limiting factors in dump leaching of pyritic ores. Appl. Math. Model., 16:553--560, 1992.
  6. G. Pantelis, A. I. M. Ritchie, and Y. A. Stepanyants. A conceptual model for the description of oxidation and transport processes in sulfidic waste rock heaps. Appl. Math. Model., 26:751--770, 2002. http://dx.doi.org/10.1016/S0307-904X(01)00085-3
  7. S. M. Pidsley (Ed.). Rum Jungle Rehabilitation Project. Monitoring Report 1993-1998, Department of Infrastructure, Planning and Environment, Technical Report No. 01/2002, 2002. URL
  8. A. I. M. Ritchie. The waste-rock environment. In: Short Course Handbook on Environmental Geochemistry of Sulfide Mine-Wastes, eds J. L. Jambor and D. W. Blowes, Mineralogical Association of Canada, Nepean, Canada, 22:133--161, 1994.
  9. A. I. M. Ritchie. Optimization of biooxidation heaps. In: Biomining: Theory, Microbes and Industrial Processes, ed. by D. E. Rawlings, Springer, 201--226, 1997.
  10. A. I. M. Ritchie and P. Miskelly. Geometric and physico-chemical properties determining sulfide oxidation rates in waste rock dumps. In: Proc. Fifth Int. Conf. Acid Rock Drainage, ICARD-2000, Denver, Colorado, 277--287, 2000. http://technology.infomine.com/hydromine/papers/icard4.pdf
  11. P. K. W. Vinsome and J. Westerveld. A simple method for predicting cap and base rock heat losses in thermal reservoir simulators. The J. Canad. Petrol. Tech., July--September, 87--90, 1980.