ANZIAM J. 46(E) ppC47--C58, 2005.

Flow focusing in microchannels

M. R. Davidson

D. J. E. Harvie

J. J. Cooper-White

(Received 16 November 2004, revised 11 February 2005)

Abstract

A volume-of-fluid numerical method is used to predict the dynamics of drop formation in an axi-symmetric microfluidic flow-focusing geometry for a liquid-liquid system. The Reynolds numbers and Weber numbers approximate those of a three-dimensional flow in recently published experiments. We compare the predicted drop formation with the experimental results at various flow rates, and discuss the mechanisms of drop formation in this context. Despite the differences in geometry, we find qualitative correspondence between the numerical and experimental results. Both end-pinching and capillary-wave instability are important for droplet break-up at the higher flow rates.

Download to your computer

Authors

M. R. Davidson
D. J. E. Harvie
Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia. mailto:m.davidson@unimelb.edu.au
J. J. Cooper-White
Department of Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4067, Australia.

Published 14 March 2005, amended March 18, 2005. ISSN 1446-8735

References

  1. S. L. Anna, N. Bontoux, and H. A. Stone. Formation of dispersions using ``flow focusing'' in microchannels. {Appl. Phys. Lett.,} 82(3):364--366, 2003.
  2. J.U. Brackbill, D.B. Kothe, and C. Zemach. A continuum method for modelling surface tension. {J. Comput. Phys.,} 100:335--354, 1992.
  3. A. M. Ganan-Calvo. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. {Phys. Rev. Lett.,} 80(2):285--288, 1998.
  4. P. Garstecki, I. Gitlin, W. DiLuzio, G.M. Whitesides, E. Kumacheva, and H.A. Stone. Formation of monodisperse bubbles in a microfluidic flow-focusing device. {Appl. Phys. Lett.,} 85(13):2649--2651, 2004.
  5. T. Nisisako, T. Torii and T. Higuchi. Droplet formation in a microchannel network. {Lab. Chip,} 2:24--26, 2002.
  6. T.R. Powers, D. Zhang, R.E. Goldstein and H.A. Stone. Propagation of a topological transition: The Rayleigh instability. {Physics of Fluids,} 10(5):1052--1057, 1998.
  7. M. Rudman. A volume tracking method for interfacial flows with large density variations. {Int. J. Numer. Meth. Fluids,} 28:357--378, 1998.
  8. H. A. Stone, B.J. Bentley and L.G. Leal. An experimental study of transient effects in the breakup of viscous fluids. {J. Fluid Mech.,} 173:131--158, 1986.
  9. H. A. Stone and L.G. Leal. Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. {J. Fluid Mech.,} 198:399--427, 1989.
  10. D.L. Youngs. Time-dependent multi-material flow with large fluid distortion, in K.W. Morton and M.J. Baines (eds.), Numerical Methods for Fluid Dynamics, pp. 273--285, Academic Press, New York, 1982.