ANZIAM J. 46(E) ppC29--C46, 2005.

A fast wavelet algorithm for image deblurring

D. L. Donoho

M. E. Raimondo

(Received 8 October 2004, revised 1 February 2005)

Abstract

We present a nonlinear fully adaptive wavelet algorithm which can recover a blurred image (n×n) observed in white noise with O(n2(logn)2) steps. Our method exploits both the natural representation of the convolution operator in the Fourier domain and the typical characterisation of Besov classes in the wavelet domain. A particular feature of our method includes "cycle-spinning" band-limited wavelet approximations over all circulant shifts. The speed and the accuracy of the algorithm is illustrated with numerical examples of image deblurring. All figures presented in this paper are reproducible using the WaveD software package.

Download to your computer

Authors

D. L. Donoho
Dept. Statistics, Stanford University, Stanford, u.s.a.
M. E. Raimondo
Dept. Maths & Stats, The University of Sydney, Sydney, Australia. mailto:marcr@maths.usyd.edu.au

Published 10 March 2005, amended March 18, 2005. ISSN 1446-8735

References

  1. M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging, Institute of Physics, Bristol and Philadelphia, 1998.
  2. R. Coifman and D. Donoho, Translation-invariant de-noising, in Wavelets and Statistics, A. Antoniadis and G. Oppenheim, eds., New York: Springer Verlag, vol. 103 of Lecture Notes in Statistics (1995) pp. 125--150, pp. 125--150.
  3. D. Donoho and M. Raimondo, Translation invariant deconvolution in a periodic setting, The International Journal of Wavelets, Multiresolution and Information Processing 2, No. 4 (2004), 415--431.
  4. E. Hern\`andez and G. Weiss, A First Course on Wavelets, CRC Press, 1996.
  5. I. Johnstone, G. Kerkyacharian, D. Picard, and M. Raimondo, Wavelet deconvolution in a periodic setting, Journal of the Royal Statistical Society, Series B 66 (2004), 547--573. With discussion pp.627-652.
  6. I. M. Johnstone and M. Raimondo, Periodic boxcar deconvolution and diophantine approximation, Annals of Statistics 32 (2004), 1781--1804.
  7. S. Mallat, A wavelet tour of signal processing (2nd Edition), Academic Press Inc., San Diego, CA, 1998.
  8. Y. Meyer, Ondelettes et Op{e}rateurs-I, Hermann, 1990.
  9. R. Neelamani, H. Choi, and R. Baraniuk, Forward: Fourier-wavelet regularized deconvolution for ill-conditioned systems, IEEE Transactions on signal processing 52 (2004), 418--433.