ANZIAM J. 46(E) ppC351--C364, 2005.

Vortex breakdown state selection as a meta-stable process

A. J. Fitzgerald

K. Hourigan

M. C. Thompson

(Received 13 December 2004, revised 3 March 2005)

Abstract

Previous studies of unconfined swirling jets showed that both bubble and conical states of vortex breakdown can occur over a range of Reynolds numbers. State selection was postulated to be metastable, with small changes to initial conditions causing a discontinuous change to the final state for a particular final Reynolds-swirl number pair. Axisymmetric numerical simulations using a spectral element method of a swirling jet started from zero initial flow conditions show that the bubble state prevails at lower swirl ratios while the cone state dominates at higher swirl ratios. However, simulations where the jet evolution was started from a developed bubble state maintained that same state well into the region where previous simulations resulted in conical breakdown. These results give some indication of the inherent stability of the bubble state relative to the cone state. They also extend the work of Billant, Chomaz, and Huerre [J. Fluid Mech., 376:183--219, 1998] who observed the cone state from startup at swirl ratios slightly greater than the critical swirl ratio. In these simulations, perturbations cause the cone to be swept downstream only reappearing as a bubble with favourable perturbations.

Download to your computer

Authors

A. J. Fitzgerald
K. Hourigan
M. C. Thompson
Fluids Laboratories for Aeronautical and Industrial Research, Department of Mechanical Engineering, Monash University, Clayton, Australia. mailto:aran.fitzgerald@eng.monash.edu.au

Published May 15, 2005. ISSN 1446-8735

References

  1. W. Althaus, C. Br{u}cker, and M. Weimer. Breakdown of slender vortices. In Fluid Vortices (ed. S. Green), pages 373--426, 1995.
  2. B. T. Benjamin. Theory of the vortex breakdown phenomenon. J. Fluid Mech., 14(4):593--629, 1962.
  3. P. Billant, J.-M. Chomaz, and P. Huerre. Experimental study of vortex breakdown in swirling jets. J. Fluid Mech., 376:183--219, 1998.
  4. M. P. Escudier. Observations of the flow produced in a cylindrical container by a rotating endwall. Exps. Fluids, 2:189--196, 1994.
  5. J. H. Faler and S. Leibovich. An experimental map of the internal structure of a vortex breakdown. J. Fluid Mech., 86:313--335, 1978.
  6. S. Farokhi, R. Taghavi, and E. J. Rice. Effect of initial swirl distribution on the evolution of a turbulent jet. AIAA Journal, 27(6):700--706, 1988.
  7. W. J. Grabowski and S. A. Berger. Solutions of the navier-stokes equations for vortex breakdown. J. Fluid Mech., 75:525--544, 1976.
  8. M. Kurosaka, Kikuchi M., K. Hirano, T. Yuge, and H. Inoue. Interchangeability of vortex-breakdown types. Exps. Fluids, 34:77--86, 2003.
  9. O. Lucca-Negro and T. O'Doherty. Vortex breakdown: A review. Prog. Energy Combust. Sci., 27:431--481, 2001.
  10. A. Mager. Dissipation and breakdown of a wing-tip vortex. J. Fluid Mech., 55(4):609--628, 1972.
  11. M. {O}zg{o}ren, B. Sahin, and D. Rockwell. Vortex structure on a delta wing at high angle of attack. AIAA Journal, 40:258--292, 2002.
  12. J. Panda and G. K. McLaughlin. Experiments on the instabilities of a swirling jet. Phys. Fluids, 6:262--276, 1994.
  13. M. R. Ruith, P. Chen, E. Meiburg, and T. Maxworthy. Three-dimensional vortex breakdown in swirling jets and wakes: Direct numerical simulation. J. Fluid Mech., 486:331--378, 2003.
  14. R. E. Spall, T. B. Gatski, and C. E. Grosch. A criterion for vortex breakdown. Phys. Fluids, 30(11):3434--3440, 1987.
  15. M. C. Thompson, T. Leweke, and M. Provansal. Kinematics and dynamics of sphere wake transition. J. Fluids Structures, 15:575--585, 2001.