ANZIAM J. 46(E) pp.C1086--C1103, 2005.
Long simulations of the Solar System: Brouwer's Law and chaos
K. R. Grazier | W. I. Newman | James M. Hyman | Philip. W. Sharp |
Abstract
The accuracy of long simulations of the Solar System is limited by the accumulation of round-off error. If the round-off error is systematic, the error in conserved quantities grows as t where t is time, and that in dynamical variables as t2. If the round-off error is stochastic, the error grows as t1/2 and t3/2 respectively. In a previous study, we showed that it was possible to implement the order thirteen Stormer method so the errors grew stochastically for the two-dimensional Kepler problem. Here we show the implementation gives stochastic error growth on three-dimensional simulations of the Solar System. Our integrations are such that the positions of the major planets are known with an estimated error of no more than 2o after 109 years, a precision unmatched by earlier investigations. Further, our numerical results suggest the outer Solar System is not chaotic as has previously been reported, but rather computational errors in positions grow no faster than t3/2, conforming with existing models for stochastic error growth in an otherwise well-behaved system of ordinary differential equations.
Download to your computer
- Click here for the PDF article (386 kbytes) We suggest printing 2up.
- Click here for its BiBTeX record
Authors
- K. R. Grazier
- The Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. mailto:krg@anlashok.jpl.nasa.gov
- W. I. Newman
- Departments of Earth and Space Sciences, Physics and Astronomy, and Mathematics, University of California, Los Angeles, CA 90095, USA. mailto:win@ucla.edu
- James M. Hyman
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA. mailto:hyman@lanl.gov
- Philip. W. Sharp
- Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand. mailto:sharp@math.auckland.ac.nz
Published October 19, 2005. ISSN 1446-8735
References
- J. H. Applegate, M. R. Douglas, Y. Gursel, G. J. Sussman and J. Wisdom, The outer Solar System for 200 million years, Astron. J. 92 (1986), 176--194.
- D. Brouwer, On the accumulation of errors in numerical integration, Astron. J. 46 (1937), 149--153.
- J. R. Dormand, M. E. A. El-Mikkawy, P. J. Prince, High-order embedded Runge--Kutta--Nystrom formulae, IMA J. Numer. Anal. 7, (1987), 423--430.
- M. Duncan, T. Quinn and S. Tremaine, The long-term evolution of orbits in the Solar System: a mapping approach, Icarus 82 (1989), 402--418. http://dx.doi.org/10.1016/0019-1035(89)90047-X
- K. R. Grazier, The stability of planetesimal niches in the outer Solar System: a numerical investigation, PhD. dissertation, Department of Mathematics, University of California, Los Angeles, 1997.
- K. R. Grazier, W. I. Newman, W. M. Kaula and J. M. Hyman, Dynamical evolution of planetesimals in the outer Solar System. I. The Jupiter/Saturn Zone. Icarus 140 (1999), 341--352. http://dx.doi.org/10.1016/0019-1035(89)90047-X
- K. R. Grazier, W. I. Newman, F. Varadi, W. M. Kaula and J. M. Hyman, Dynamical evolution of planetesimals in the outer Solar System. II. The Saturn/Uranus and Uranus/Neptune Zones. Icarus 140 (1999), 353--368. http://dx.doi.org/10.1016/0019-1035(89)90047-X
- K. R. Grazier, W. I. Newman, J. M. Hyman, P. W. Sharp, and D. G. Goldstein, Achieving Brouwer's Law with high-order Stormer multistep methods, ANZIAM J., 46(E) (2005) C786--C804. http://anziamj.austms.org.au/V46/CTAC2004/Graz
- E. Hairer, S. P. N\o rsett and G. Wanner, Solving ordinary differential equations I, 2 ed, Springr-Verlag, 1993. URL
- P. Henrici, Discrete variable methods in ordinary differential equations, John Wiley & Son, New York, 1962.
- M. J. Holman, A possible long-lived belt of objects between Uranus and Neptune, Nature 387 (1997) 785--787. http://dx.doi.org/10.1038/42890
- T. Ito and K. Tanikawa, Long-term integrations and stability of planetary orbits in our Solar System, Mon. Not. R. Astron. Soc. 336 (2002), 483--500. http://dx.doi.org/10.1046/j.1365-8711.2002.05765.x
- H. Kinoshita and H. Nakai, Motions of the Perihelions of Neptune and Pluto Celest. Mech. 34 (1984), 203--217.
- A. Milani and A. Nobili, Integration error over very long time spans, Celest. Mech. 43 (1988) 1--34.
- G. Quinlan and S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits, Astron. J. 100 (1990), 1694--1700.
- G. Sussman and J. Wisdom, Chaotic evolution of the Solar System, Science, 257 (1992), 56--62.
- H. Yoshida, Non-existence of the modified first integral by symplectic integration methods II: Kepler problem, Celest. Mech. Dyn. Astron. 83 (2002), 355--364. http://dx.doi.org/10.1023/A:1020158625544